106 research outputs found

    Multiple Scale Reorganization of Electrostatic Complexes of PolyStyrene Sulfonate and Lysozyme

    Get PDF
    We report on a SANS investigation into the potential for these structural reorganization of complexes composed of lysozyme and small PSS chains of opposite charge if the physicochemical conditions of the solutions are changed after their formation. Mixtures of solutions of lysozyme and PSS with high matter content and with an introduced charge ratio [-]/[+]intro close to the electrostatic stoichiometry, lead to suspensions that are macroscopically stable. They are composed at local scale of dense globular primary complexes of radius ~ 100 {\AA}; at a higher scale they are organized fractally with a dimension 2.1. We first show that the dilution of the solution of complexes, all other physicochemical parameters remaining constant, induces a macroscopic destabilization of the solutions but does not modify the structure of the complexes at submicronic scales. This suggests that the colloidal stability of the complexes can be explained by the interlocking of the fractal aggregates in a network at high concentration: dilution does not break the local aggregate structure but it does destroy the network. We show, secondly, that the addition of salt does not change the almost frozen inner structure of the cores of the primary complexes, although it does encourage growth of the complexes; these coalesce into larger complexes as salt has partially screened the electrostatic repulsions between two primary complexes. These larger primary complexes remain aggregated with a fractal dimension of 2.1. Thirdly, we show that the addition of PSS chains up to [-]/[+]intro ~ 20, after the formation of the primary complex with a [-]/[+]intro close to 1, only slightly changes the inner structure of the primary complexes. Moreover, in contrast to the synthesis achieved in the one-step mixing procedure where the proteins are unfolded for a range of [-]/[+]intro, the native conformation of the proteins is preserved inside the frozen core

    Microfluidic SAXS study of lamellar and multilamellar vesicle phases of linear sodium alkylbenzenesulfonate surfactant with intrinsic isomeric distribution

    Get PDF
    The structure and flow behaviour of a concentrated aqueous solution (45 w.t. %) of the ubiquitous linear sodium alkylbenzene sulfonate (NaLAS) surfactant is investigated by microfluidic small-angle X-ray scatterong (SAXS) at 70 ⁰C. NaLAS is an intrinsically complex mixture of over 20 surfactant molecules, presenting coexisting micellar (L1) and lamellar (Lα) phases. Novel microfluidic devices were fabricated to ensure pressure and thermal resistance, ability to handle viscous fluids, and low SAXS background. Polarized light optical microscopy showed that the NaLAS solution exhibits wall slip in microchannels, with velocity profiles approaching plug flow. Microfluidic SAXS demonstrated the structural spatial heterogeneity of the system with a characteristic lengthscale of 50 nL. Using a statistical flow-SAXS analysis we identified the micellar phase and multiple coexisting lamellar phases with a continuous distribution of d spacings between 37.5 Å - 39.5 Å. Additionally, we showed that the orientation of NaLAS lamellar phases is strongly affected by a single microfluidic constriction. The bilayers align parallel to the velocity field upon entering a constriction and perpendicular to it upon exiting. On the other hand, multi-lamellar vesicle phases are not affected under the same flow conditions. Our results demonstrate that, despite the compositional complexity inherent to NaLAS, microfluidic SAXS can rigorously elucidate its structure and flow response

    Simulation of resonant tunneling heterostructures: numerical comparison of a complete Schr{ö}dinger-Poisson system and a reduced nonlinear model

    Get PDF
    Two different models are compared for the simulation of the transverse electronic transport through an heterostructure: a 1D1D self-consistent Schr{ö}dinger-Poisson model with a numerically heavy treatment of resonant states and a reduced model derived from an accurate asymptotic nonlinear analysis. After checking the agreement at the qualitative and quantitative level on quite well understood bifurcation diagrams, the reduced model is used to tune double well configurations for which nonlinearly interacting resonant states actually occur in the complete self-consistent model

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources

    Review

    No full text

    Zur Herzwirkung des Coffeins

    No full text
    corecore