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Virginie Bonnaillie-Noël, Ali Faraj, Francis Nier. Simulation of resonant tunneling heterostruc-
tures: numerical comparison of a complete Schrödinger-Poisson system and a reduced nonlinear
model. 2008. <hal-00267725>

HAL Id: hal-00267725

https://hal.archives-ouvertes.fr/hal-00267725

Submitted on 28 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50544308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00267725


Simulation of resonant tunneling heterostructures: numerical comparison of a complete
Schrödinger-Poisson system and a reduced nonlinear model

Virginie Bonnaillie-Noël∗
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Two different models are compared for the simulation of the transverse electronic transport through an het-
erostructure: a 1D self-consistent Schrödinger-Poisson model with a numerically heavy treatment of resonant
states and a reduced model derived from an accurate asymptotic nonlinear analysis. After checking the agree-
ment at the qualitative and quantitative level on quite wellunderstood bifurcation diagrams, the reduced model
is used to tune double well configurations for which nonlinearly interacting resonant states actually occur in the
complete self-consistent model.

I. INTRODUCTION

The modelling of the electronic transport in quantum elec-
tronic devices is well described within a Landauer-Büttiker
approach (see [1][2][3][4][5][6][7]). A well-known diffi-
culty for the numerical simulations comes from quantum res-
onances because they produce very stiff variations of the
spectral quantities with respect to the energy variable: this
increases dramatically the numerical complexity or requires
some specific treatment. This point becomes an issue when
the numerical simulation is motivated by a self-consistent
nonlinear problem which takes into account in a mean field
approach the electronic repulsion (see [8][9][10]). Such a
nonlinear system is often referred to as a Schrödinger-Poisson
system. Meanwhile in the one-dimensional setting the scat-
tering states are simply described in the active region by us-
ing energy-dependent transparent boundary conditions forthe
Schrödinger equation. After an accurate asymptotic analysis
of the nonlinear spectral problem presented in [11][12][13],
an asymptotic reduced model has been derived by considering
the regime of a finite number of resonant states produced by
quantum wells in a semiclassical island. The reduced model
summarizes how a finite number of resonant states as well
as the phase-space geometry of the tunnel effect governs the
nonlinearity and may produce several nonlinear solutions like
in [14]. After introducing carefully the scaling and checking
the relevancy of the approximations, realistic cases similar to
the one studied in [10] for GaAs devices and [9] for Si-SiO2
devices have been numerically tested in [15]. The agreement
with the simulations of [10][9] were satisfactory althoughthe
configurations in [15] were not exactly the same (for exam-
ple, the nonlinear effect outside the barriers were not taken
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into account although they are known to produce sometimes
non negligible effects, see for example [16]). Furthermorethe
rapidity of the computations and the exhaustive description of
nonlinear solutions with the finite dimensional reduced model
made possible the exploration of some exotic nonlinear solu-
tions with nonlinearly interacting resonant states. The purpose
of the present article is twofold

1. Check by taking exactly the same data for both models
that the reduced model and the complete Schrödinger-
Poisson model agree very well at the qualitative and
quantitative level.

2. Check that the exotic nonlinear solutions found in
the double well problem make sense within the
Schrödinger-Poisson problem and lead to interesting
physical phenomena like a damped beating effect sta-
ble for an extended range of applied bias.

Although a rescaling leading to dimensionless quantities al-
lows to consider equally Ga-As or Si-SiO2 devices (see [15])
only Ga-As have been considered here.

II. THE MODEL

Initial writing.
The massm that we use is the effective electronic massm=
m3 in the transverse directionx = x3. The quantum hamilto-
nian for a single electron has the form

− ~
2

2m
d2

dx2 +V (x), V = B +V 0 +VNL, (1)

with a nonlinear potentialVNL which is non negative and
takes into account the mean repulsive electrostatic potential
in the areaa ≤ x ≤ b. The nonlinear effects are not taken
into account outside the heterostructure (quasineutral approx-
imation). The total potential denoted byV also includes the
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piecewise affine functionB referring to the bias voltage−B,

B (x) = −B

[

x−a
b−a

1[a,b](x)+1[b,+∞)(x)

]

.

It is also made of the second termV 0 which describes the
barriers and the wells,

V 0(x) = V01[a,b](x)+
N

∑
j=1

W j(x),

with the constantV0 > 0 and the compactly supported poten-
tialsW j ∈ L∞(R), −V0 ≤W j ≤ 0, fixed. The external poten-
tial B +V 0 is represented in Figure 1. The beam of electrons

XX

XXX

XXXX

X

XXX

6

V0

?
−B

a b

FIG. 1: Linear potential in the heterostructure.

injected from both sides is described by a functionf of the
momentum variablek ≷ 0

f (k) = g
+
(k2)1R+(k)+g−(k2−B)1R−(k) .

Up to the reference energy (0 or−B), the injection profile is
the same for both sides

g
+
(E) = g

0
(E) and g−(E) = g

0
(E +B) ,

whereg0 is the Fermi-Dirac distribution function integrated
along the two directions(x1,x2)

g
0
(k2) =

√
m1m2 kBT

π~2 ln

(

1+exp

(

EF− ~
2k2
2m

kBT

))

, (2)

with the Fermi level

EF =
~

2

2
(3π2nD)2/3 (m1m2m3)

−1/3 .

The introduction of a non isotropic effective electronic mass
(m1,m2,m3) with this simplified relation between donor den-
sity nD andEF allows to adapt this model and the numerical
simulations to Si-SiO2 heterostructures like in [9].
The out-of-equilibrium regime for Schrödinger-Poisson sys-
tem requires the introduction of the generalized eigenfunc-
tions in order to describe the steady state density. The incom-
ing generalized eigenfunctionsψ−(k,x) are defined fork > 0
by

− ~
2

2m
d2

dx2 ψ−(k,x)+V ψ−(k,x) = ~
2k2

2m ψ−(k,x) for x∈ R,

ψ−(k,x) = eikx +R(k)e−ikx for x≤ a,

ψ−(k,x) = T(k)ei
√

k2+B x for x≥ b,

with a similar formulation fork< 0 (exchangex≤aandx≥ b,
replacek by a well chosen square root ofk2−B, see [15] for
details). The electronic densityn is given by

n(x) =
Z +∞

0
g(k2)|ψ−(k,x)|2 dk

2π

+

Z 0

−∞
g(k2−B)|ψ−(k,x)|2 dk

2π
. (3)

Finally the nonlinear potentialVNL solves the Poisson equa-
tion

{

−∆VNL = q2

ε n,

VNL(a) = VNL(b) = 0.
(4)

The average current density (independent ofx in the steady
state) is computed according to the steady state formula

J =
e~

m

Z +∞

0

g(k2)

b−a

Z b

a
ℑ∇ψh

−(k,x)ψh
−(k,x)dx

dk
2π

. (5)

Rescaling.
For a more flexible numerical treatment which can be adapted
to several kinds of semiconductors, and also in order to carry
out the asymptotic analysis which has led to the reduced
model, the Schrödinger-Poisson system is better written with
dimensionless quantities and unknowns. The rescaled posi-
tion variablex = (x−a)/L, L = b− a, now lies in[0,1] and
the rescaled energies are given byE = E/EF , V =V/EF . The
nonlinear system with unknowVh

NL can be written






























































































−h2 d2

dx2 ψh
−(k,x)+V hψh

−(k,x) = k2ψh
−(k,x),

+ transparent boundary conditions atx = 0 or 1,

V h(x) = B (x)+V h
0 (x)+Vh

NL(x),

V
h
0 (x) = V01[0,1](x)−

N

∑
j=1

Wj
( x−cj

h

)

,

g0(k2) = β−1 ln
(

1+exp(β(1−k2))
)

,

g+(E) = g0(E) and g−(E) = g0(E +B),

n(x) =
Z +∞

0
g+(k2)|ψh

−(k,x)|2 dk
2πh

+

Z 0

−∞
g−(k2−B)|ψh

−(k,x)|2 dk
2πh,

−∆Vh
NL = γn, with Vh

NL(0) = Vh
NL(1) = 0.

(6)

The parameters equal

k=
k~√
2mEF

, h=
~

L
√

2mEF
, β =

EF

kBT
and γ =

4L
aB

,

where the Bohr radius is defined as usualaB = 4π~
2ε√

m1m2 q2 .

III. THEORY AND APPLICATIONS

The reduced model is obtained after taking the limit
h → 0 in the system (6). This analysis has been carried out
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completely in the series of articles [12][13][11]. In the end
the reduced model consists in solving some simple collection
of finite dimensional (the dimension equals the numberN of
wells) nonlinear systems with constraints. In order to write
them, some notations are necessary. We simply give a brief
review of the theoretical results and their application. The
adaptation of this system in realistic situations whenh > 0 is
0.1 or 0.3 has been explained with details in [15].

Notations.

• For a given limitV = limh→0Vh
NL, the potentialṼ is the

corresponding filled (i.e. where the wellsWj have been
removed) potential

Ṽ (x) = B (x)+V01[0,1](x)+V(x) .

• For anyj = 1, . . . ,N, (−εk
j )1≤k≤K j <+∞ denotes the finite

collection of negative eigenvalues for the Schrödinger
operatorH j := −d2/dx2 + Wj(x), labelled in the in-
creasing order. The set of energiesE j is defined by

E j =
{

Ṽ (c j)− εk
j , 1≤ k≤ K j

}

. (7)

• The set of resonant energies is defined asE = ∪N
j=1E j .

• For anyE ∈ R, we set

JE := { j ∈ {1, . . . ,N} s. t. E ∈ E j}.
When j ∈ JE, the wellc j is called resonant at the energy
E.

• Finally, we set

cE
ℓ := min

j∈JE
c j , cE

r := max
j∈JE

c j ,

and simply

cE when cE
ℓ = cE

r .

• For a potentialΦ, the action (or Agmon distance) is
given by

dAg(x,y;Φ) =

∣

∣

∣

∣

Z y

x

√

max{Φ(t),0} dt

∣

∣

∣

∣

.

For a resonant energyE ∈ E , we set

δE
ℓ := dAg(c

E
r ,1;Ṽ −E)−dAg(0,cE

r ; Ṽ −E),

δE
r := dAg(0,cE

ℓ ; Ṽ −E)−dAg(c
E
ℓ ,1;Ṽ −E) .

Asymptotic system.
The reduced model written for all the possible limitsV of Vh

NL
ash→ 0 is written as a simple Poisson equation






−∆V = ∑
E∈E

∑
j∈JE

(

tE
j (g+(E)−g−(E))+g−(E)

)

δcj ,

V(0) = V(1) = 0,
(8)

with the convention that(g+ − g−)(0) can be any value in
[0,(g+ − g−)(0+)] and where the coefficientstE

j belong to
[0,1] and satisfy:

• tE
j = 0 whenE < 0 ,

• and forE > 0,
{

δE
ℓ > 0⇒ tE

j = 1, ∀ j ∈ JE,

δE
r > 0⇒ tE

j = 0, ∀ j ∈ JE.
(9)

The above system (8) is actually a finite dimensional system
since the charges are asymptotically concentrated like delta-
functions and the potentialV is a piecewise affine function.
This asymptotic system restates the paradigm about resonant
heterostructures which says that the nonlinear effects are
governed by a finite number of resonant states. The quantum
mechanics is contained in the finite set of resonant energies
and also in the coefficientst j which encodes the comparison
of the tunnel effects between the left- and right-hand sides.
Consider the single well case for example: the coefficient
t1 vanishes when the tunnel effect at the resonant energie
is easier on the left-hand side than on the right-hand side,
equals 1 in the opposite case, and can take an arbitrary value
when the two tunnel effects have a comparable intensity. The
general rule (9) given above is just an example of a possible
comparison. Things can be specified and are a bit more com-
plicated when the interaction of resonances is made possible
in the multiple well problem. On the basis of the theoretical
analysis carried out in [12][13], a complete classificationhas
been proposed in [15] for the double well problem. Finally
note that the coefficientst j and the value(g+ − g−)(0) can
be viewed as Lagrange parameters which takes arbitrary
value when some constraint about the Agmon distances
or the energies is saturated. Hence the finite dimensional
problem can be easily solved numerically in order to get
all the possible asymptotic solutions to the nonlinear problem.

Adaptation.
The theoretical asymptotic analysis suggests that in the limit
h→ 0 the quantum wells and the charges are concentrated at
some pointsci , i = 1, . . . ,N. In realistic cases, the rescaling
of the equations leads to value ofh of order 10−1, which is
small but not very small. The asymptotic picture has to be
adapted in order to make the most suitable approximation for
the different quantities: Concentrated charges is a reasonable
approximation when the nonlinearity is not very strong and if
ci is well chosen, but the comparison of the tunnel effect has
to be done with the exact sizes of the potential barriers:

• The resonances have imaginary parts (or resonances
width) of order e−C/h and give rise to very stiff varia-
tions of spectral quantities even whenh > 0 is not very
small. This part of the asymptotic model (i.e. the sum
over the setJE) is kept.

• When the nonlinearity is not very strong in comparison
with the potential barrier (that isV0 = V0/EF ≫ 1), a
good average position of the charge can be determined
via an interpolation method based on the Feynmann-
Hellman relation.

• The evaluation of the tunnel effects in the phase-
space involves the comparison of quantities looking like
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e−A1(h)/h and e−A2(h)/h. In order to make an accurate
comparison of two such quantities, the factorsA1(h)
andA2(h) have to be computed accurately. In this case
the exact geometry of the potential barriers is taken into
account, that is they are computed with the exact nu-
merical value ofh.

Details of these modifications of the asymptotic model have
been explained with details in [15] while checking at every
step the relevancy of the approximations.

IV. STEADY STATES COMPUTATIONS

In [15], a rather good numerical agreement with other
simulations for Ga-As in [10] and for Si-SiO2 in [9] het-
erostructures was observed. The reduced model, after
adaptation, allowed to understand clearly how the numerical
data influence the bifurcation diagrams of nonlinear steady
states when the applied bias varies. For example the hystere-
sis phenomenon appears clearly in a double barrier structure
(one well) when the right-hand side barrier is larger than the
first one and not in the opposite case. Contrary to the general
numerical tests, the case when the two barriers have the same
size has to be avoided since the tunnel effects on both sides
are comparable, with fluctuations due to the nonlinearity
and the applied bias which cannot be easily determined a
priori. In the double well problem (three barriers) a possible
nonlinear interaction of two resonant states, giving rise to
a new branch of nonlinear steady states, was detected with
the reduced model although no such case had been presented
before.

The comparison with the numerical solution of the initial
Schrödinger-Poisson system has two aims: 1) Verify accu-
rately the numerical agreement between the adapted reduced
model and the Schrödinger-Poisson system roughly observed
in [15] when the modelling and the numerical data are exactly
the same (for example the nonlinear effects outside the het-
erostructure are not taken into account in the present version
of the reduced model contrary to the results in [10] and [9]);2)
Check that the bifurcation diagrams observed in the reduced
model, with a great sensitivity to numerical data, can really be
produced with the far from equilibrium Schrödinger-Poisson
system.

The reduced resolution is compared with the direct resolu-
tion presented in [10]. The direct resolution, considered as
the reference, is performed as follows. The nonlinear system
(6) is solved by using a Gummel iteration, proposed in [17],
which corresponds to finding the solutionVnew

NL of the equation

− d2

dx2Vnew
NL = γnold exp(Vold

NL −Vnew
NL ) ,

for a given iterateVold
NL . The densitynold is computed from

the potentialVold
NL by solving a large enough number of

Schrödinger equations, appearing in (6), in order to make an
accurate numerical integration with respect to thek variable
in the computation of the particle density. The number

of Schrödinger equations and the accuracy of the density
are improved by refining the mesh of integration around
the resonant energies. The convergence of the algorithm
depends strongly on the initial guess, especially when several
nonlinear solutions are possible. In particular, the hysteresis
phenomenon can be observed numerically. Solving the
system (6) by increasing and then decreasing the applied
bias does not provide the same branch of solution after
initializing the Gummel algorithm within a continuation
method. Except with the extreme values ofB, the numerical
solution after convergence for the previous value of the bias
is used as an initial guess for the Gummel algorithm. For
the extreme values ofB, the nonlinear potential is initialized
to the null potential. Compared with this, the numerical
resolution of the reduced model provides at once all the
possible nonlinear solutions for a given bias and all the pos-
sible branches of the bifurcation diagram when the bias varies.

Double barrier Ga-As heterostructure.
In [10], Pinaud did not observe the hysteresis phenomenon be-
cause he took a symmetric double barrier. A simple change of
the size of the barriers leads to multiple nonlinear solutions to
the reduced model for a fixed bias, interpreted as an hystere-
sis case with respect to the variation of the bias. Let us recall
some physical parameters:

Rel. el. mass 0.067 Rel. permitivity 11.4
Temperature 300K Height of barriers 0.3 eV
Donor density 1024 m−3 Fermi levelEF 0.054eV

The numerical computations are carried out for 200 values of
the applied biasB between 0eV and 0.25 eV and the small
parameter takes here the value

h = 0.22,

when the geometry of the potential is given by

Size of barriers 3×10−9, 6×10−9 m
Size of well 6×10−9 m.

Figure 2 gives the comparison of the I-V curves.

FIG. 2: Comparison of I-V curves for the two models.
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Two methods for solving the complete Schrödinger-Poisson
system have been tested: 1) a continuation method by increas-
ing or decreasing the applied bias; 2) for any fixed bias, initi-
ate the Gummel algorithm by the series of all possible nonlin-
ear potentials solving the reduced model. Both methods gave
the same result. It is interesting to note that the hysteresis
effect detected via the asymptotic model appears in the con-
tinuation method: Only one part of the I-V curve is obtained
by increasing or decreasing the bias (see Fig. 3).

FIG. 3: Comparison of the I-V curves obtained via the continuation
method by increasing (top) or decreasing (bottom) the bias.

Another way to understand or compare the bifurcation dia-
grams is by looking at the resonant energy attached to any
nonlinear solution as a function of the applied bias. The first
picture of Figure 4 shows that the bifurcation diagrams are
coherent although the hysteresis phenomena are slightly am-
plified in the asymptotic model. The second picture of Figure
4 shows the comparison for the biasB = 0.05eV of the real
nonlinear potential and the piecewise affine potential of the
reduced model.

FIG. 4: Comparison of the bifurcation diagram on theEres-V curve
(left) of the nonlinear potential forB = 0.05eV (right).

Double well Ga-As heterostructure.
With the same physical parameters (except the donor density
and the geometry of the barriers) some cases have been tested
with the reduced model with a double well (three barriers) so

that there is a non trivial interaction of resonances. Such a
case has already been presented in [15] for an Si-SiO2 het-
erostructure, but we can keep the same material as above with
the same effect. The specific data of the device are given in
Table I.

Size of barriers 5×10−9, 5×10−9, 6×10−9 m
Size of wells 6×10−9 m
Donor density 5×1024 m−3

TABLE I: Data for the Ga-As device.

The reduced model leads to the bifurcation diagram given in
Figure 5, represented in terms of the two resonant energies
with respect to the applied bias (the highest resonant energy is
initially in the right-hand well).

FIG. 5: Bifurcation diagram of the reduced model.

Two branches are possible when the resonances reach the
same value, either they cross or they remain together due to
the nonlinear effect for a wide range of the bias. Actually we
know that this picture is incorrect whenh > 0 since crossings
have to be replaced by avoided crossings in 1D quantum me-
chanical systems (although resonances can lead exceptionally
to higher multiplicity Jordan blocks according to [18]). The
question is to know which configuration of Figure 6 is selected
by the complete Schrödinger-Poisson system.

E2

E1

E2

E1

E1 = E2

OR ?

FIG. 6: Two possibilities of nonlinear avoided crossings.

The computations on the full Schrödinger-Poisson system
show that both solutions coexist according to the prediction
of the reduced model.
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FIG. 7: Top: Comparison of the complete bifurcation diagrams; Mid-
dle: Continuation according toB : 0 eV → 0.16eV; Bottom: Con-
tinuation both ways.

The I-V curves are similar (see Fig. 8).

FIG. 8: Comparison of the I-V curve given by the reduced model
(left) and by solving the complete Schrödinger-Poisson system
(right).

The two model agree at the qualitative and quantitative level
although a change by 0.5 nm(a few atomic layers) of the last
barrier changes dramatically the bifurcation diagram of the
reduced model. With its numerical efficiency, the reduced
model appears here as a good tool to detect rapidly the con-
figurations which lead to interesting nonlinear effects.

V. TIME DEPENDENT NONLINEAR DYNAMICS

When the barriers are well chosen, the double well problem
leads to a branch of nonlinear steady states with interacting
resonant states. The theoretical analysis as well as the ob-
servation of the electron density for these nonlinear solutions,
show that they are due to resonant states delocalized in both
wells. The question is whether this can lead to some nonlinear
beating effect.

Like in [10], the time dependent Schrödinger system is
solved by using a Crank-Nicholson scheme:

i~
ψn+1(k,x)−ψn(k,x)

∆t = − ~
2

2m
d2

dx2

(

ψn+1(k,x)+ ψn(k,x)
)

+V
n+1/2

(x)
(

ψn+1(k,x)+ ψn(k,x)
)

,

whereV n+1/2
= 2V n −V n−1/2 and∆t is the time step, to-

gether with equation

{

−∆Vn+1
NL = q2

ε nn+1,

Vn+1
NL (a) = Vn+1

NL (b) = 0.

The Crank-Nicholson scheme comes with the transparent
boundary conditions proposed by [19] and the initial condition
ψ0(k,x) = φ(k,x), whereφ(k,x) denotes the wave function at
frequencyk corresponding to the solution of (6) for the initial
bias. The densitynn+1(x) is computed from theψn+1(k,x)
using formula (3).

Several time-dependent simulations of the full Schrödinger-
Poisson system have been carried out. It is realized by switch-
ing at timet = 0, the bias fromB = 0 eV to B = 0.08eV. The
initial data are the one associated with the nonlinear steady
state forB = 0 eV. Figure 9 shows the variations with respect
to time of average density current calculated numerically,for
the donor density 5× 1024 m−3. The average current den-
sity Jn at then-th time step is computed by using formula (5)
(such an expression makes sense within an adiabatic approxi-
mation), where the stationary wave functions are replaced by
theψn(k,x):

Jn =
e~

m

Z +∞

0

g(k2)

b−a

Z b

a
ℑ∇ψn(k,x)ψn(k,x)dx

dk
2π

.

FIG. 9: Evolution of the current and the charge densities in the wells.

The (damped) beating effect is even more obvious on the sec-
ond plot of Figure 9, which shows the time evolution of the
charge concentrated in the first and second wells. The period
of the oscillations and the damping time can be determined
after applying a FFT analysis to the time dependent curves.
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The damping time is determined after translating the time-
dependent curve by one periodTper, the peak of the Fourier
transform is multiplied by e−Tper/Tdamp. The numerical com-
putation of the periodTper shows a good agreement with the
theoretical value 2π~/∆E, where∆E denotes the gap (com-
puted numerically on the nonlinear steady state solution) be-
tween the two resonant energies, although the nonlinear ef-
fects should bring some correction on the time dependent
analysis. This has been done in Table II for several values
of the doping density, without changing the other parameters.
The nonlinear effects increase when the donor density is in-
creasing.

Donor density (m−3) 2π~

∆E (ps) Tper (ps) Tdamp(ps)

10×1024 0.69 0.55 1.1
5×1024 0.51 0.43 1.6
2×1024 0.54 0.43 2.1
1×1024 0.5 0.43 2.6

TABLE II: Theoretical periods and numerical values ofTper and
Tdamp for several donor densities.

The frequency of the oscillations of order 0.5×10−12scor-
responding to wavelengths of order 10−4 mmakes the electro-
static description for such an oscillating charge relevantat the
nanometer scale. Note that the damping is increasing when
the nonlinear effects are stronger, in agreement with what is
observed in some other models studied for example in [20])
where the nonlinearity kills the beating effect after reaching a

critical strength. Such a theoretical study would be valuable
here but requires some heavy mathematical techniques.

VI. CONCLUSION

The comparison of the reduced model introduced in
[11][12][13][15] with the simulation of the complete
Schödinger-Poisson system confirms its ability to predictthe
bifurcation diagrams for far from equilibrium resonant tun-
neling devices. Such a discussion in [11] and [15] had already
explained in the single well problem which barrier configu-
ration could lead to hysteresis phenomena. Although a rather
strong sensitivity to the geometry of the barriers, it also allows
to design configurations for which resonant states of a double
well system interact nonlinearly in a rather stable way. The
question is whether such nonlinear steady states or in the tran-
sient regime such a nonlinear beating effect survive in a more
complete modelling taking into account the nonlinear effects
outside the barrier-well structure. In the time-dependentdou-
ble well problem, the coupling of the oscillating dipole with
the electromagnetic field could be of interest as well.
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