265 research outputs found

    A model of non-perturbative gluon emission in an initial state parton shower

    Get PDF
    We consider a model of transverse momentum production in which non-perturbative smearing takes place throughout the perturbative evolution, by a simple modification to an initial state parton shower algorithm. Using this as the important non-perturbative ingredient, we get a good fit to data over a wide range of energy. Combining it with the non-perturbative masses and cutoffs that are a feature of conventional parton showers also leads to a reasonable fit. We discuss the extrapolation to the LHC.Comment: 14 pages, 6 figures; version accepted by JHE

    Underlying events in Herwig++

    Full text link
    In this contribution we describe the new model of multiple partonic interactions (MPI) that has been implemented in Herwig++. Tuning its two free parameters is enough to find a good description of CDF underlying event data. We show extrapolations to the LHC and compare them to results from other models.Comment: 4 pages, 3 figures, to appear in the proceedings of the "HERA and the LHC" worksho

    Multiple Interactions in Herwig++

    Get PDF
    In this contribution we describe a new model of multiple partonic interactions that has been implemented in Herwig++. Tuning its two free parameters we find a good description of CDF underlying event data. We show extrapolations to the LHC and discuss intrinsic PDF uncertainties.Comment: 4 pages, 2 figures, to appear in the proceedings of the DIS 2008 workshop, 7-11 April 2008, University College Londo

    Soft interactions in Herwig++

    Get PDF
    We describe the recent developments to extend the multi-parton interaction model of underlying events in Herwig++ into the soft, non-perturbative, regime. This allows the program to describe also minimum bias collisions in which there is no hard interaction, for the first time. It is publicly available from versions 2.3 onwards and describes the Tevatron underlying event and minimum bias data. The extrapolations to the LHC nevertheless suffer considerable ambiguity, as we discuss.Comment: 10 pages, talk given by Manuel Bahr at First International Workshop on Multiple Partonic Interactions at the LHC, "MPI@LHC'08", Perugia, Italy, October 27-31 200

    Consumption of Methane and CO_2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea

    Get PDF
    The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH_4 and CO_2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO_2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ^(13)C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of ^(14)C from radiolabeled CH_4 or CO_2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with ^(14)CH_4 or ^(14)CO_2 revealed that there was interconversion of CH_4 and CO_2. The level of CO_2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis

    Simulation of multiple partonic interactions in Herwig++

    Get PDF
    In this paper we describe a new model of multiple partonic interactions that has been implemented in Herwig++. Tuning its two free parameters we find a good description of CDF underlying event data. We show extrapolations to the LHC.Comment: 25 pages, 16 figures, plots and tune updated for Herwig++ 2.2.1, additional paragraph on the LHC extrapolatio

    Herwig++ 2.0 Release Note

    Get PDF
    A new release of the Monte Carlo program Herwig++ (version 2.0) is now available. This is the first version of the program which can be used for hadron-hadron physics and includes the full simulation of both initial- and final-state QCD radiation.Comment: Source code and additional information available at http://hepforge.cedar.ac.uk/herwig

    Exploring the spectroscopic diversity of type Ia supernovae with DRACULA: a machine learning approach

    Get PDF
    The existence of multiple subclasses of type Ia supernovae (SNeIa) has been the subject of great debate in the last decade. One major challenge inevitably met when trying to infer the existence of one or more subclasses is the time consuming, and subjective, process of subclass definition. In this work, we show how machine learning tools facilitate identification of subtypes of SNeIa through the establishment of a hierarchical group structure in the continuous space of spectral diversity formed by these objects. Using Deep Learning, we were capable of performing such identification in a 4 dimensional feature space (+1 for time evolution), while the standard Principal Component Analysis barely achieves similar results using 15 principal components. This is evidence that the progenitor system and the explosion mechanism can be described by a small number of initial physical parameters. As a proof of concept, we show that our results are in close agreement with a previously suggested classification scheme and that our proposed method can grasp the main spectral features behind the definition of such subtypes. This allows the confirmation of the velocity of lines as a first order effect in the determination of SNIa subtypes, followed by 91bg-like events. Given the expected data deluge in the forthcoming years, our proposed approach is essential to allow a quick and statistically coherent identification of SNeIa subtypes (and outliers). All tools used in this work were made publicly available in the Python package Dimensionality Reduction And Clustering for Unsupervised Learning in Astronomy (DRACULA) and can be found within COINtoolbox (https://github.com/COINtoolbox/DRACULA).Comment: 16 pages, 12 figures, accepted for publication in MNRA
    • …
    corecore