33 research outputs found

    Humoral immune consequences of Staphylococcus aureus ST239-associated bacteremia

    Get PDF
    The humoral immune responses against 46 different staphylococcal antigens in 27 bacteremia patients infected by clonally related methicillin-resistant Staphylococcus aureus (MRSA) strains of a single sequence type (ST) 239 were investigated. A group of non-infected patients (n = 31) hospitalized for different reasons served as controls. All strains were confirmed as ST 239 by S. aureus and mecA-specific PCR, spa, and multi-locus sequence typing (MLST). In each bacteremia patient, a unique pattern of S. aureus antigen-specific immune responses after infection was observed. Antibody levels among bacteremia patients were significantly higher than controls for HlgB (P = 0.001), LukD (P = 0.009), LukF (P = 0.0001), SEA (P = 0.0001), SEB (P = 0.011), SEC (P = 0.010), SEQ (P = 0.049), IsaA (P = 0.043), IsdA (P = 0.038), IsdH (P = 0.01), SdrD (P = 0.001), SdrE (P = 0.046), EsxA (P = 0.0001), and SA0104 (P = 0.0001). On the other hand, the antibody levels were significantly higher among controls for SSL3 (P = 0.009), SSL9 (P = 0.002), and SSL10 (P = 0.007) when the IgG level on the day of infection was compared with that measured on the day of admission. Diversity was observed in the immune response against the antigens. However, a set of antigens (IsaA, IsdA, IsdH, SdrD, and HlgB) triggered a similar type of immune response in different individuals. We suggest that these antigens could be considered when developing a multi-component (passive) vaccine. SEA and/or its specific antibodies seem to play a critical role during ST239 MRSA bacteremia and SEA-targeted therapy may be a strategy to be considered

    Methicillin-susceptible Staphylococcus aureus from clinical and community sources are genetically diverse.

    Get PDF
    Despite the association of methicillin-susceptible S. aureus (MSSA) with several life-threatening diseases, relatively little is known about their clinical epidemiology in Malaysia. We characterized MSSA isolates (n=252) obtained from clinical and community (carriage) sources based on spa sequencing and multilocus sequence typing (MLST). The prevalence of several important virulence genes was determined to further define the molecular characteristics of MSSA clones circulating in Malaysia. Among the 142 clinical and 110 community-acquired MSSA isolates, 98 different spa types were identified, corresponding to 8 different spa clonal clusters (spa-CCs). In addition, MLST analysis revealed 22 sequence types (STs) with 5 singletons corresponding to 12 MLST-CCs. Interestingly, spa-CC084/085 (MLST-CC15) (p=0.038), spa-non-founder 2 (MLST-ST188) (p=0.002), and spa-CC127 (MLST-CC1) (p=0.049) were identified significantly more often among clinical isolates. spa-CC3204 (MLST-CC121) (p=0.02) and spa-CC015 (MLST-CC45) (p=0.0002) were more common among community isolates. Five dominant MLST-CCs (CC8, CC121, CC1, CC45, and CC5) having clear counterparts among the major MRSA clones were also identified in this study. While the MSSA strains are usually genetically heterogeneous, a relatively high frequency (19/7.5%) of ST188 (t189) strains was found, with 57.8% of these strains carrying the Panton-Valentine leukocidin (PVL). Analysis of additional virulence genes showed a frequency of 36.5% and 36.9% for seg and sei and 0.8% and 6.3% for etb and tst genes, respectively. Arginine catabolic mobile element (ACME) was detected in 4 community isolates only. These represent the first isolates harbouring this gene in an Asian region. In conclusion, MSSA from the Malaysian community and their clinical counterparts are genetically diverse, but certain clones occur more often among clinical isolates than among carriage isolates and vice versa

    Livestock-associated MRSA colonization of occupational exposed workers and households in Europe: a review

    Get PDF
    The worldwide escalation in antibiotic resistant microorganisms has sustained the increasing concerns regarding antibiotics extensive use in animal food industry, which can result in a selection pressure that is driving the emergence of strains such as methicillin-resistant staphylococcus aureus (MRSA). Human MRSA infections are a well-known cause of numerous hospitalizations and deaths associated with extremely high mortality rates for invasive infections. Both animals and humans can become bacterial reservoirs of Livestock Associated MRSA (LA-MRSA) in which colonization predisposes to staphylococcal acquisition in clinical settings and to transfer the infection to others including household members. Biomonitoring of occupational exposed individuals which spend several hours per day in direct contact with MRSA-positive animals and thus are irrefutably exposed to a high risk of nasal colonization is imperative in order to develop effective preventive strategies. Here we performed an extensive review regarding the prevalence of LA- MRSA colonization in both occupational exposed individuals and their house-holds in a European context.info:eu-repo/semantics/publishedVersio

    First report on methicillin-resistant Staphylococcus aureus of Spa type T037, Sequence type 239, SCCmec type III/IIIA in Malaysia

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) from Malaysia were shown to possess staphylococcal cassette chromosome mec (SCCmec)-III and IIIA. Spa sequencing and multi-locus sequence typing (MLST) documented t037 and ST 239 (CC8) for 83.3% of the isolates. This confirms observations in several other Far Eastern countries and corroborates the epidemicity of this clone

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore