1,000 research outputs found

    A summary of NASA/Air Force full scale engine research programs using the F100 engine

    Get PDF
    A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools

    Dynamics and Control of Shock Motion in a Near-Isentropic Inlet

    Full text link

    Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner.

    Get PDF
    Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell frequency was similarly observed following immunization of T cell specific Notch mutant mice with OVA/CFA. However, in this setting, Th17 cytokine secretion was impaired, and increased intracellular retention of IL-17 was observed. Intracellular IL-17 co-localized with the CD71 iron transporter in the draining lymph node of both control and Notch-deficient Th17 cells. Immunization induced CD71 surface expression in control, but not in Notch-deficient Th17 cells, revealing defective CD71 intracellular transport in absence of Notch signaling. Moreover, Notch receptor deficient Th17 cells had impaired mTORC2 activity. These data reveal a context-dependent impact of Notch on vesicular transport during high metabolic demand suggesting a role for Notch signaling in the bridging of T cell metabolic demands and effector functions. Collectively, our findings indicate a prominent regulatory role for Notch signaling in the fine-tuning of Th17 cell differentiation and effector function

    Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model

    Get PDF
    In this study a coupled ocean-atmosphere model containing interactive marine biogeochemistry is used to analyze interannual, lagged, and decadal marine biogeochemical responses to the North Atlantic Oscillation (NAO), the dominant mode of North Atlantic atmospheric variability. The coupled model adequately reproduces present-day climatologies and NAO atmospheric variability. It is shown that marine biogeochemical responses to the NAO are governed by different mechanisms according to the time scale considered. On interannual time scales, local changes in vertical mixing, caused by modifications in air-sea heat, freshwater, and momentum fluxes, are most relevant in influencing phytoplankton growth through light and nutrient limitation mechanisms. At subpolar latitudes, deeper mixing occurring during positive NAO winters causes a slight decrease in late winter chlorophyll concentration due to light limitation and a 10%–20% increase in spring chlorophyll concentration due to higher nutrient availability. The lagged response of physical and biogeochemical properties to a high NAO winter shows some memory in the following 2 years. In particular, subsurface nutrient anomalies generated by local changes in mixing near the American coast are advected along the North Atlantic Current, where they are suggested to affect downstream chlorophyll concentration with 1 year lag. On decadal time scales, local and remote mechanisms act contemporaneously in shaping the decadal biogeochemical response to the NAO. The slow circulation adjustment, in response to NAO wind stress curl anomalies, causes a basin redistribution of heat, freshwater, and biogeochemical properties which, in turn, modifies the spatial structure of the subpolar chlorophyll bloom

    The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes

    Get PDF
    Background: The most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10–15%, and neurological sequelae in 30– 50% of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. Methods: Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. Results: The E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. Conclusions: Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion

    Dynamics of Decadal Climate Variability and Implications for its Prediction

    Get PDF
    The temperature record of the last 150 years is characterized by a long-term warming trend, with strong multidecadal variability superimposed. The multidecadal variability is also seen in other (societal important) parameters such as Sahel rainfall or Atlantic hurricane activity. The existence of the multidecadal variability makes climate change detection a challenge, since Global Warming evolves on a similar timescale. The ongoing discussion about a potential anthropogenic signal in the Atlantic hurricane activity is an example. A lot of work was devoted during the last years to understand the dynamics of the multidecadal variability, and external as well as internal mechanisms were proposed. This White Paper focuses on the internal mechanisms relevant to the Atlantic Multidecadal Oscillation/Variability (AMO/V) and the Pacific Decadal Oscillation/Variability (PDO/V). Specific attention is given to the role of the Meridional Overturning Circulation (MOC) in the Atlantic. The implications for decadal predictability and prediction are discussed

    Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change

    Full text link
    The North Atlantic Oscillation (NAO) obtained using instrumental and documentary proxy predictors from Eurasia is found to be characterized by a quasi 60-year dominant oscillation since 1650. This pattern emerges clearly once the NAO record is time integrated to stress its comparison with the temperature record. The integrated NAO (INAO) is found to well correlate with the length of the day (since 1650) and the global surface sea temperature record HadSST2 and HadSST3 (since 1850). These findings suggest that INAO can be used as a good proxy for global climate change, and that a 60-year cycle exists in the global climate since at least 1700. Finally, the INAO ~60-year oscillation well correlates with the ~60- year oscillations found in the historical European aurora record since 1700, which suggests that this 60-year dominant climatic cycle has a solar-astronomical origin

    A simplified study of trans-mitral Doppler patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trans-mitral Doppler produces complex patterns with a great deal of variability. There are several confusing numerical measures and indices to study these patterns. However trans-mitral Doppler produces readymade data visualization by pattern generation which could be interpreted by pattern analysis. By following a systematic approach we could create an order and use this tool to study cardiac function.</p> <p>Presentation of the hypothesis</p> <p>In this new approach we eliminate the variables and apply pattern recognition as the main criterion of study. Proper terminologies are also devised to avoid confusion. In this way we can get some meaningful information.</p> <p>Testing the hypothesis</p> <p>Trans-mitral Doppler should be seen as patterns rather than the amplitude. The hypothesis can be proven by logical deduction, extrapolation and elimination of variables. Trans-mitral flow is also analyzed <it>vis-à-vis </it>the Starling's Law applied to the left atrium.</p> <p>Implications of the hypothesis</p> <p>Trans-mitral Doppler patterns are not just useful for evaluating diastolic function. They are also useful to evaluate systolic function. By following this schema we could get useful diagnostic information and therapeutic options using simple pattern recognition with minimal measurements. This simplified but practical approach will be useful in day to day clinical practice and help in understanding cardiac function better. This will also standardize research and improve communication.</p

    Conclusions and recommendations of a who expert consultation meeting on iron supplementation for infants and young children in malaria endemic areas [Conclusions et recommandations à l\u27issue de la consultation de l\u27oms sur la lutte contre la carence martiale chez le nourrisson et le jeune enfant dans les pays d\u27endémie palustre]

    Get PDF
    This article presents the results of an expert consultation meeting aimed at evaluating the safety and public health implications of administering supplemental iron to infants and young children in malaria-endemic areas. Participants at this meeting that took place in Lyon, France on June 12-14, 2006 reached consensus on several important issues related to iron supplementation for infants and young children in malaria-endemic areas. The conclusions in this report apply specifically to regions where malaria is endemic

    Iron bioavailability in two commercial cultivars of wheat: a comparison between wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic acid on iron uptake into Caco-2 cells

    Get PDF
    Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model. Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells than ascorbic acid or 2'-deoxymugineic acid, another metal chelator present in plants
    corecore