98 research outputs found

    Spectroscopy of thulium and holmium heavily doped tellurite glasses

    Get PDF
    In this study, we report spectroscopic properties of Tm3þ and Ho3þ codoped tellurite glasses over a wide dopant concentration range in order to assess their potential laser performance under 790 nm diode laser excitation. The impact of Tm3þ and Ho3þ concentrations is investigated to identify specific candidates for fiber laser operation. The emission cross section is calculated and discussed, as well as the gain coefficient of this type of glasses. Energy transfer microparameters and critical ion distances are determined for 3H4, 3F4 (Tm3þ), and 5I7 (Ho3þ) emission levels in the framework of diffusionlimited regime and dipole-dipole interaction. We also report thermal properties of tested glasse

    Upconversion assisted self-pulsing in a high-concentration erbium doped fiber laser

    Get PDF
    We report results on experimental and theoretical characterisation of self-pulsing in high concentration erbium doped fibre laser which is free from erbium clusters. Unlike previous models of self-pulsing accounting for pair-induced quenching (PIQ) on the clustered erbium ions, new model has been developed with accounting for statistical nature of the excitation migration and upconversion and resonance-like pumpto-signal intensity noise transfer. The obtained results are in a good agreement with the experimental data

    Wideband-tuneable, nanotube mode-locked, fibre laser

    Get PDF
    Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems

    Direct Simulation of a Solidification Benchmark Experiment

    No full text
    International audienceA solidification benchmark experiment is simulated using a three-dimensional cellular automaton-finite element solidification model. The experiment consists of a rectangular cavity containing a Sn-3 wt pct Pb alloy. The alloy is first melted and then solidified in the cavity. A dense array of thermocouples permits monitoring of temperatures in the cavity and in the heat exchangers surrounding the cavity. After solidification, the grain structure is revealed by metallography. X-ray radiography and inductively coupled plasma spectrometry are also conducted to access a distribution map of Pb, or macrosegregation map. The solidification model consists of solutions for heat, solute mass, and momentum conservations using the finite element method. It is coupled with a description of the development of grain structure using the cellular automaton method. A careful and direct comparison with experimental results is possible thanks to boundary conditions deduced from the temperature measurements, as well as a careful choice of the values of the material properties for simulation. Results show that the temperature maps and the macrosegregation map can only be approached with a three-dimensional simulation that includes the description of the grain structure

    Polymorphous adenocarcinoma of the salivary glands : reappraisal and update

    Get PDF
    Although relatively rare, polymorphous adenocarcinoma (PAC) is likely the second most common malignancy of the minor salivary glands (MiSG). The diagnosis is mainly based on an incisional biopsy. The optimal treatment comprises wide surgical excision, often with adjuvant radiotherapy. In general, PAC has a good prognosis. Previously, PAC was referred to as polymorphous low-grade adenocarcinoma (PLGA), but the new WHO classification of salivary gland tumours has also included under the PAC subheading, the so-called cribriform adenocarcinoma of minor salivary glands (CAMSG). This approach raised controversy, predominantly because of possible differences in clinical behaviour. For example, PLGA (PAC, classical variant) only rarely metastasizes, whereas CAMSG often shows metastases to the neck lymph nodes. Given the controversy, this review reappraises the definition, epidemiology, clinical presentation, diagnostic work-up, genetics, treatment modalities, and prognosis of PAC of the salivary glands with a particular focus on contrasting differences with CAMSG.Peer reviewe
    • …
    corecore