1,918 research outputs found

    Three-sublattice Skyrmion crystal in the antiferromagnetic triangular lattice

    Get PDF
    The frustrated classical antiferromagnetic Heisenberg model with Dzyaloshinskii-Moriya (DM) interactions on the triangular lattice is studied under a magnetic field by means of semiclassical calculations and large-scale Monte Carlo simulations. We show that even a small DM interaction induces the formation of an Antiferromagnetic Skyrmion crystal (AF-SkX) state. Unlike what is observed in ferromagnetic materials, we show that the AF-SkX state consists of three interpenetrating Skyrmion crystals (one by sublattice), and most importantly, the AF-SkX state seems to survive in the limit of zero temperature. To characterize the phase diagram we compute the average of the topological order parameter which can be associated to the number of topological charges or Skyrmions. As the magnetic field increases this parameter presents a clear jump, indicating a discontinuous transition from a spiral phase into the AF-SkX phase, where multiple Bragg peaks coexist in the spin structure factor. For higher fields, a second (probably continuous) transition occurs into a featureless paramagnetic phase.Comment: 8 pages, 8 figure

    Field induced multiple order-by-disorder state selection in antiferromagnetic honeycomb bilayer lattice

    Get PDF
    In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer honeycomb lattice in a highly frustrated regime in presence of a magnetic field. This study shows strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For antiferromagnetic couplings J1=Jx=Jp/3J_1=J_x=J_p/3, we find that at low temperatures there are two different regions in the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions present broken Z2Z_2 symmetry and are separated by a not fully collinear classical plateau at M=1/2M=1/2. At higher temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also discuss the low temperature behavior of the system for a less frustrated region, J1=Jx<Jp/3J_1=J_x<J_p/3.Comment: revised version - accepted for publication in Physical Review B - 12 pages, 11 figure

    Metastable and scaling regimes of a one-dimensional Kawasaki dynamics

    Get PDF
    We investigate the large-time scaling regimes arising from a variety of metastable structures in a chain of Ising spins with both first- and second-neighbor couplings while subject to a Kawasaki dynamics. Depending on the ratio and sign of these former, different dynamic exponents are suggested by finite-size scaling analyses of relaxation times. At low but nonzero-temperatures these are calculated via exact diagonalizations of the evolution operator in finite chains under several activation barriers. In the absence of metastability the dynamics is always diffusive.Comment: 18 pages, 8 figures. Brief additions. To appear in Phys. Rev.

    Magnetization plateaux and jumps in a frustrated four-leg spin tube under a magnetic field

    Get PDF
    We study the ground state phase diagram of a frustrated spin-1/2 four-leg spin tube in an external magnetic field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings by means of three different approaches: analysis of low-energy effective Hamiltonian (LEH), a Hartree variational approach (HVA) and density matrix renormalization group (DMRG) for finite clusters. We find that in the limit of weakly interacting plaquettes, low-energy singlet, triplet and quintuplet states play an important role in the formation of fractional magnetization plateaux. We study the transition regions numerically and analytically, and find that they are described, at first order in a strong- coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model. All techniques provide consistent results which allow us to predict the existence of fractional plateaux in an important region in the space of parameters of the model.Comment: 10 pages, 7 figures. Accepted for publication in Physical Review

    Topological phase transition driven by magnetic field and topological Hall effect in an antiferromagnetic skyrmion lattice

    Get PDF
    The topological Hall effect (THE), given by a composite of electric and topologically non-trivial spin texture is commonly observed in magnetic skyrmion crystals. Here we present a study of the THE of electrons coupled to antiferromagnetic Skyrmion lattices (AF-SkX). We show that, in the strong Hund coupling limit, topologically non-trivial phases emerge at specific fillings. Interestingly, at low filling an external field controlling the magnetic texture, drives the system from a conventional insulator phase to a phase exhibiting THE. Such behavior suggests the occurrence of a topological transition which is confirmed by a closing of the bulk-gap that is followed by its reopening, appearing simultaneously with a single pair of helical edge states. This transition is further verified by the calculation of the the Chern numbers and Berry curvature. We also compute a variety of observables in order to quantify the THE, namely: Hall conductivity and the orbital magnetization of electrons moving in the AF-SkX texture.Comment: 6 pages, 5 figure

    Chiral phase transition and thermal Hall effect in an anisotropic spin model on the kagome lattice

    Full text link
    We present a study of the thermal Hall effect in the extended Heisenberg model with XXZXXZ anisotropy in the kagome lattice. This model has the particularity that, in the classical case, and for a broad region in parameter space, an external magnetic field induces a chiral symmetry breaking: the ground state is a doubly degenerate q=0q=0 order with either positive or negative net chirality. Here, we focus on the effect of this chiral phase transition in the thermal Hall conductivity using Linear-Spin-Waves theory. We explore the topology and calculate the Chern numbers of the magnonic bands, obtaining a variety of topological phase transitions. We also compute the magnonic effect to the critical temperature associated with the chiral phase transition (TcSWT_c^{SW}). Our main result is that, the thermal Hall conductivity, which is null for T>TcSWT>T_c^{SW}, becomes non-zero as a consequence of the spontaneous chiral symmetry breaking at low temperatures. Therefore, we present a simple model where it is possible to "switch" on/off the thermal transport properties introducing a magnetic field and heating or cooling the system.Comment: 9 pages, 6 figures, Accepted for publication in Phys. Rev.

    On Doppler tracking in cosmological spacetimes

    Get PDF
    We give a rigorous derivation of the general-relativistic formula for the two-way Doppler tracking of a spacecraft in Friedmann-Lemaitre-Robertson-Walker and in McVittie spacetimes. The leading order corrections of the so-determined acceleration to the Newtonian acceleration are due to special-relativistic effects and cosmological expansion. The latter, although linear in the Hubble constant, is negligible in typical applications within the Solar System.Comment: 10 pages, 1 figure. Journal versio
    • …
    corecore