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In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer
honeycomb lattice in a highly frustrated regime in the presence of a magnetic field. This study shows
strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For
antiferromagnetic couplings J; = J, = J,/3, we find that at low temperatures there are two different regions in
the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions
present broken Z, symmetry and are separated by a not fully collinear classical plateau at M = 1/2. At higher
temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also
discuss the low-temperature behavior of the system for a less frustrated region, J, = J, < J,/3.
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I. INTRODUCTION

A magnetic system is called frustrated if local pairwise
interactions between spins cannot be satisfied simultaneously.
Frustration can arise from competing interactions and/or from
a specific lattice geometry, as illustrated, e.g., by a triangular
lattice. Magnetic frustration gives rise to an extremely rich
phenomenology in both quantum and classical systems.
Quantum frustrated magnets are the main candidates for a
variety of unconventional phases and phase transitions such
as spin liquids and critical points with deconfined fractional
excitations [1]. Frustration also plays an important role in
(semi)classical spin systems, for which the order-by-disorder
mechanism [2,3] is capable of producing new unexpected types
of long-range magnetic order. For this phenomenon certain
low-temperature configurations are favored not by the energy,
but by their entropy. If the entropy selection fails, fluctuation
between degenerate ground states may result in a cooperative
paramagnet or a classical spin liquid [4].

In the past few years, a large body of experimental evidence
was gathered for magnetic frustration in BisMn4O1,(NO3) [5].
This layered material consists of Mn*" ions with § = 3/2
arranged in honeycomb bilayers. Because of the large negative
value of the Curie-Weiss temperature @¢cy = —257 K and
a lack of long-range order down to 7 ~ 0.4 K, competing
antiferromagnetic interactions inside honeycomb planes were
initially suggested [5]. More recently, significance of an
interlayer coupling inside bilayers was pointed out by Ganesh
et al. [6]. In addition, the first-principles calculations [7]
suggest the presence of only weak intralayer frustration but
strong interlayer coupling and possible frustration between
layers.

Motivated by these findings, we study here the minimal
classical spin model with frustration between layers. Our
model includes a strong antiferromagnetic interlayer coupling
Jp, the nearest-neighbor exchange in honeycomb layers Ji,
and a diagonal interaction J, between layers comparable in
magnitude with J;. The choice of couplings J, =~ J; leads to
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extensive degeneracy of classical ground states, which has
its origin in complete mean-field decoupling of interlayer
classical dimers. Similar quantum models of S = 1/2 dimers
with frustrated interdimer coupling were extensively studied
in one and two dimensions [8—14]. They exhibit a number
of interesting physical properties, which include exact singlet
ground states, localized triplon modes, and fractional magne-
tization plateaus. Our work complements the previous studies
by providing theoretical results in the (semi)classical limit
S > 1. Although we do not expect to obtain the complete
phase diagram of BisMn4O1,(NOs3), the obtained results may
be relevant not only for this material but also for other magnetic
materials consisting of S > 1/2 spin dimers (see, for example,
Refs. [15-17]).

In this classical system, we find a number of novel phases
induced by an external magnetic field that are generated by the
thermal order by disorder effect. The selection varies along
the magnetization curve with a plateau at M = 1/2 separating
regions with different behaviors. The paper is structured as
follows: In Sec. II we present the Hamiltonian and we study
the ground state order based on the spherical approximation.
This allows us to identify regions in the parameter space where
frustration plays a significant role. In Sec. III we focus on
the strongly frustrated case, where the Hamiltonian can be
rewritten as a sum of the square of the total spin of connected
plaquettes. We describe the different phases and study the role
of thermal fluctuations as a scenario for the appearance of a
M = 1/2 plateau and the multiple order-by-disorder selection.
In Sec. IV we extend the previous study for a less frustrated
case. We conclude in Sec. V with a summary and discussion
of our results.

II. SPIN MODEL AND SPHERICAL APPROXIMATION

The classical model presented here is based on the
low-temperature magnetic properties of BizsMnsO;2(NO3).
The main exchange interactions in this material are still
disputed [7,18]. One possibility is the presence of nearest-
neighbor coupling J; and a weak second nearest-neighbor
coupling J, in each layer as well as interlayer interactions
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FIG. 1. (a) Frustrated honeycomb bilayer lattice. Solid spheres
represent spin-S moments and the labels A, B,C, D indicate the four
sites of each unit cell. Intralayer nearest-neighbor coupling J; and
interlayer couplings J, and J,, are indicated. (b) Three plaquettes X
sharing one bond. Each pair of opposite intralayer spins is shared by
three plaquettes.

Jp, and J,. More distant interactions, such as an intralayer
third-neighbor exchange J; have also been suggested. In
our study, we consider the classical model, where spins
are replaced by unit vectors, of two nonfrustrated honey-
comb layers with antiferromagnetic intralayer exchange J,
coupled by frustrating antiferromagnetic J,-J, bonds (see
Fig. 1).

The general spin Hamiltonian in a magnetic field is given
by

H = pZ(Sr,A “St.c+Ses-Sep)—h Z Sei

+ Z(Sr,A -S¢ B +Sr.c - Sr.p)

(r,r’)

+Jc > (Sea-Se.p+Ses - Sec), ()

(r,r’)

where r runs over unit cells, (r,r’) denotes interactions within
the cell and between nearest-neighbor cells, and i is the spin
cellindexi = A,B,C,D.

This Hamiltonian has a discrete Z, symmetry which
corresponds to the exchange of spin pairs connected by J,, i.e.,
areflection symmetry through a plane that is perpendicular to
the J; bonds and crosses through the middle of the plaquettes.

This symmetry will play an important role in the character-
ization of the low-temperature phases and we will later discuss
how this symmetry is broken in particular cases.

In the J; = J; case, the Hamiltonian (1) has the property
that can be written as a function of the total spin of the opposite
spin pairs or “dimers.” We introduce new variables Px , =
Sw.4 +Sm.c and Px g = Sx 5 + Swm.p and performing the
sum over all four-spin elementary plaquettes X [indicated in
Fig. 1(b)] we get

Ng
H=Ci+)_ {%(Pﬁm +PL,)
X

h
+ Ji(Prq - Prp) — 3 (Pr.o + Px,ﬁ)}, 2
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where the labels «,8 correspond to the spin pairs (A-C)
and (B-D), respectively; h = hZ, Nxg = %N is the number
of plaquettes on an N-site lattice, and C; is a constant.
Furthermore, from Eq. (2) it is straightforward that for
the particular point J; = J, = J,/3 (highly frustrated point)
the Hamiltonian can be written, up to a constant term, as a
quadratic function of the total spin of the plaquettes:

Ny

Jp 2 2
H=c2+;Z(Sg—J—ph-Sg : 3
X
where Sxg = Zieg S;,h = hZ, and C, is a constant. These two
regimes J; = J; and J; = J, = J,/3, where the ground state

condition can be studied analytically, will be addressed in the
following sections.

As a first step to explore the full range of parameter
space, we adopt the spherical approximation to investigate
the resultant magnetic ground state of the general Hamiltonian
Eq. (1) at zero magnetic field (& = 0). In this approximation the
local fixed spin-length constraint |[S, ;| = 1 (i = A,B,C,D)is
replaced by a global one Y . [S;:|> = N S?/4, where N is
the number of lattice sites [19]. With the new soft constraint,
the spin Hamiltonian (1) can be diagonalized with the aid of
the Fourier transformation S¢ = )", S¢ e'"k Here o = x, ¥,2,
and r and k denote the position and pseudomomentum,
respectively. The Hamiltonian then becomes

M=) W MW, “)
Kk,«

where Wi = (S 4, 5% 5 Sk.c+Sk.p) [A, B, C,and D being the
different sites in the unit cell as shown in Fig. 1(a)] and

0 Jiy(k) Jp Jry(K)

MK) Jiy(=Kk) 0 Jry(=K) I
I Sy y(K) 0 Jry (k)

Jry(=K) Jp Jiy(=k) 0

(&)

The ordered ground-state energy is associated with the lowest
eigenvalue w™"(k*) of the matrix M(k). Four different
eigenvalues of the matrix (5) are given by

Woo (K) =0 Jp, + 0" |y + 0 Ji| lyK), (6)

where 0,0’ = %1, |[y(K)| = \/3 +2) ; cos(k.e;), and e; =
(1,0), €2 = (1/2,4/3/2), €3 = €| — e,.

Figure 2 shows plots of the eigenvalues from Eq. (6) for
a few values of j—;,;—; In each case, the minimum in the
lowest band defines the ordering wave vector k*. It can be
seen that for both J; # J; and J; = J, > J,/3 the ground
state is unique and corresponds to k* = 0. On the other hand,
for J; = J, < J,/3 the two lowest bands are completely flat
suggesting a lack of a long-range magnetic order at zero
temperature. For J; = J, = J,/3 one of the dispersive upper
bands with a minimum at k* = 0 touches the flat bands
indicating even higher degeneracy.

In this situation, where Jy =J, < J,/3, the low-
est bands w__(k) = w_,(k) = —J, (flat and degenerate)
have eigenvectors (pﬁ‘,__ = {O,l,O,—l}/ﬁ and q)ﬁ’_Jr =
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FIG. 2. Dispersion relations w;(k) as a function of k for four
regions of the couplings parameter space. Panel (a) (top left) J, # J,.
The lowest band has a minimum at k* = 0. Panel (b) (top right)
Ji = J < J,/3. The minimum are two overlapping completely flat
bands, selecting no particular value of k. Panel (c) (bottom left)
shows the special case of J, = J, = J,/3, where the minimum has
the peculiarity that at k* =0 the two overlapping completely flat
bands (that do not select a particular ordering vector) coincide with
the next lowest band. Panel (d) (bottom right) J; = J, > J,/3. There
are two flat (overlapping) and two nontrivial bands. The lowest band
has a minimum at k* = 0.

{1,0,—1,0}/+/2. So, the spherical approximation shows that
in the ground state, pairs of spins connected by J,, i.e.,
(A-C) and (B-D) are antiferromagnetically correlated in each
component (o = x,y,z), forming “antiferromagnetic (AF)
dimers.” Therefore, because the bands are flat, the only
condition for the ground state is that the opposite spin pairs in
each cell form these AF dimers.

Thus, this simple analysis demonstrates that the magnetic
system may present interesting phenomena for J; = J, <
J,/3. Motivated by the spherical approximation results and
the effective Hamiltonians (2) and (3), in the following
sections we proceed with the investigation of the frustrated
spin model (1) in a magnetic field and at finite temperature
in this particular regime J; = J,, which includes the special
point J; = J, = J,/3.

III. STRONGLY FRUSTRATED POINT J, = J, = J,/3

First, we focus our work in the highly frustrated point J; =
Jy = J,/3. The corresponding Hamiltonian written as Eq. (3)
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FIG. 3. Examples of the spin configurations with the same energy
for h/J, < 2 for a plaquette. In configurations (a) and (b) all spins
in the plaquette have the same projection along the magnetic field
(“umbrella” configuration). According to how the perpendicular
components cancel out, given that plaquettes are not independent,
some degeneracy is retained. In configuration (a) the azimuthal angles
are free, whereas in (b) they are fixed. In (c) and (d) the ground state
condition is fulfilled by two spins, and the other two cancel each
other out. This latter pair is indicated with a dashed line. Depending
on which pair cancels out, there are still some degrees of freedom.
In this case, in (c) each pair of spins has azimuthal freedom, and the
polar angle in the left-hand pair is arbitrary. In (d), all the angles are
fixed.

can be studied minimizing the energy of each plaquette X:
S = —. (7)

The classical ground state is obtained when this constraint is
satisfied in every block and presents only the typical global
rotation as a degeneracy. The saturation field /; is determined
by the condition Sy = 4 which gives h; = 4J,. At this value
all the spins are aligned with the magnetic field. Since the
Hamiltonian can be rewritten as a sum of elementary blocks,
the ground state condition [Eq. (7)] can be fulfilled by a number
of different configurations, which leads to a highly degenerate
ground state.

‘We illustrate this degeneracy with a few examples depicted
in Fig. 3, for the case h/J,, < 2. All four configurations shown
in the figure satisfy the ground state condition from Eq. (7).
Since the pairs joined by J, are shared by three plaquettes,
the selection of a particular configuration for a plaquette can
fix all the system, or there might still be some degrees of
freedom in each plaquette. In Fig. 3, (a) and (b) are possible
arrangements for an “umbrella” configuration, where all spins
have the same projection parallel to the external magnetic
field, 4 in z. The difference between (a) and (b) is simply how
the azimuthal components cancel out. If these components
cancel out between pairs joined by J; or J, in one plaquette,
as in (b), then all the plaquettes are fixed. However, if they
cancel out between pairs joined by J,, each of these pairs
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in each plaquette retains the azimuthal degree of freedom.
Configurations (c) and (d) are possible only for 4/J,, < 2. The
ground state condition is fulfilled by one pair of spins in the
plaquette, and the other two cancel each other. This particular
pair that adds up to Sy, = 0 is indicated by a dashed line.
Again, if this pair is made by two spins connected by J, [as
in (d)] or by Ji, the configuration is fixed. If it is the J,, pair,
there are three free angles per plaquette: the two angles of the
Spair = 0 pair and the azimuthal angle of the other one.

In the next sections we will study how the inclusion of
thermal fluctuations can select specific configurations due
to a different entropy of short-wavelength fluctuations above
degenerate configuration by the order-by-disorder mechanism
at low temperatures [2].

A. Monte Carlo simulations

In order to explore the behavior of the system at finite
temperature and find whether particular phases are selected, we
resorted to Monte Carlo (MC) simulations performed using the
standard Metropolis algorithm combined with overrelaxation
(microcanonical) updates [20]. One hybrid MC step consists of
one canonical MC step followed by three to ten microcanonical
random updates depending on cluster size. Periodic boundary
conditions were implemented for N =4 x L? site clusters
with L = 12-72. At every magnetic field or temperature
we discarded 1 x 10° hybrid Monte Carlo steps (MCS) for
initial relaxation and data were collected during subsequent
2 x 10° MCS.

As afirst step to identify different phases and corresponding
transitions, we calculate the magnetization, susceptibility, and
absolute value of S° defined as

1 dM 1
M = N?Sf’ Y= 1871 = NZ:ISil- ®)

In Fig. 4 we show the magnetization curve M, susceptibility
Xm> and absolute value of |S*| as a function of the external
field at temperature T/J, = 5 x 107,

From the top panel in Fig. 4 we can see that the
absolute value of the magnetization |S*|, which measures
how “collinear” is the spin configuration, has two different
behaviors. Between h*/J, < h/J, < 2 (where h* is a lower
critical field which depends on the temperature), |S,| is shifted
from total magnetization M by a constant value (1/4), and
for h/J, > 2 they are equal. Moreover, the susceptibility x,
shows a dip around i/J, = 2 (M = 1/2) which indicates the
presence of a quasiplateau phase.

To explore the spin configurations, we studied the average
of the scalar product between two spins in an elementary
plaquette X, (S, ; - Sy ;), where i,j = A,B,C,D. Results for
L =48andT/J, =5 x 10~* are shown in the lower panel of
Fig. 4. These results are for one realization of the simulations.
The system breaks Z, symmetry, as will be discussed later. An
average of realizations will obviously restore this symmetry,
as we have checked. However, this variable is a good illustrator
of the lattice symmetry breaking, and allows us to explore the
spin configurations.

Figure 4 (bottom) shows that the behavior for the scalar
product of face to face layer spins (those connected by J,,
{Sr.4:Sr.c} and {S; 5;S:.p} in Fig. 1) is different than for
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FIG. 4. (Upper panel) Magnetization M, absolute value of the
magnetization | S¢|, and magnetic susceptibility x,, [Eq. (8)]. The inset
shows the susceptibility around /J, = 2 for different temperatures.
(Lower panel) Average of the local scalar product (S; - S ;) = (i)
where i,j (i,j = A,B,C,D in the legend) are sites in a cell. Both
plotsona L =48 latticeat T/J, =5 x 107*.

the other ones (spins connected by intralayer coupling J; and
diagonal interlayer coupling J,). Additionally, there is also
a change in all curves at i/J, = 2. This is consistent with
what was discussed above for the magnetization curves in the
upper panel of Fig. 4. Below, we discuss the spin layout in
each plaquette obtained from the simulations. Configurations
for different regions of magnetic field are sketched in Fig. 5.
All these configurations retain different degrees of freedom.
This implies that along all the magnetization curve the ground
state degeneracy is partially lifted. These configurations and
how they are selected will be discussed below.

1. Low field region

At low temperatures and for h*/J, < h/J, < 2 (where h*
is a lower critical field which depends on the temperature), the
configuration is shown in Fig. 5(a) [notice that it has also been
shown in Fig. 3(c)].

In each plaquette, a pair of opposite spins fulfills the ground
state condition. The other pair of spins is an effective “free
spin” or AF dimer with free orientation. The behavior of the
system can thus be described as two sublattices of spin pairs
with different behavior. We call this phase “dimer phase.” This
phase clearly retains some degeneracy due to the AF dimers.
This configuration is consistent with the behavior in this region
of the scalar products and the magnetization curve in Fig. 4:
in that particular case, the pair of opposite spins that fulfills
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FIG. 5. Spin configurations in each plaquette. (a) h/J, < 2:apair
of spins at opposite sites between layers satisfies Sy 4 + Sy.c =h/J,,
and the other pair is always antiparallel at a random position (free
spin or AF dimer). (b) h/J, = 2 pseudoplateau phase: a particular
case of (a), where two spins are aligned with the magnetic field
and the other pair forms a free spin (enclosed by the dashed line).
(¢c) h/J, > 2: spins of sites connected by J, have the same z
projection, and opposite xy components.

the ground state condition is {S; 4;Sr.c}, and thus the scalar
product grows as a function of the magnetic field. The other
opposite pair, {Sy ;Sr.p}, forms a “free pair,” and therefore
their scalar product is —1. The remaining products shown in
Fig. 4 average out to 0 because the sublattice of AF dimers
is at random angles. This also explains why in the low field
region there is a 1/4 difference between |S*| and M: because
of the free orientation of the AF dimers, each spin of this kind
of pair has (S, ;) = 0 and (|S;;|) = 0.5. This configuration is
only possible for h/J, < 2, since for h/J, > 2 the ground
state constraint Sy = % would not be satisfied.

2. Pseudoplateau

For the special value of an external field #/J, = 2, which is
precisely one half of the saturation field &, a weak magnetiza-
tion plateau at M = 1/2 emerges on the magnetization curve
shown in Fig. 4. In the corresponding spin configuration, two
spins in one vertical dimer, e.g., Sy 4 and S ¢, are completely
aligned with A, whereas the remaining spins S, 5 and Sy p
in the neighboring dimer are antiparallel to each other, but
have, otherwise, a random orientation from cell to cell in the
honeycomb layers [see Fig. 5(b)]. This is a special case of the
configuration shown in Fig. 5(a), with oy = 8; = 0.

Notice that this is not a flat plateau, hence the name
pseudoplateau. This is a feature that arises with temperature,
since the state selection is not an energetic one [21]. This
pseudoplateau can be defined as the region between the
dip and the peak in the susceptibility. It is very narrow at
low temperatures, then broadens and is destroyed at high
temperatures. The inset in Fig. 4 shows the susceptibility
around h/J, = 2 for different values of T'/J,.

A remarkable property of the spin configuration at the
plateau is that it is not fully collinear. This is in a strong contrast
to the fully collinear classical plateau states in the triangular
lattice [22] and other frustrated spin models [23,24]. The root
of this difference lies in a very large configurational degeneracy
of the system of frustrated classical spin dimers. Alternation
of polarized and antiparallel spin pairs in the plateau phase is
somewhat similar to the magnetic structure of the 1/2 plateau
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found for the frustrated spin-1/2 ladder [ 12]. The latter consists
of a periodic structure of triplet and singlet rungs, whereas in
our case the alternation breaks only the Z, symmetry between
two sites in a unit cell of the honeycomb lattice.

3. High field region

For2 < h/J, < h**/J, (where h** is an upper critical field
which depends on the temperature), the general configuration
is depicted in Fig. 5(c). The system splits into two sublattices
of spin pairs with azimuthal freedom and fixed z projection in
each sublattice, such that the sum of the projections satisfies

CosS oy + cosay = @ We call this phase “broken umbrella.”
The lower panel of Fig. 4 shows that for 1/J, > 2 the system
chooses one pair of opposite sublattices (in this particular case
A-C) to be almost parallel to the magnetic field.

For higher magnetic fields, 2/J, > h**, the results shown in
the lower panel of Fig. 4 are consistent of the broken umbrella
phase, where all spins have the same z projection. We refer to
this phase as the “umbrella” phase.

It is important to notice that, as mentioned above, the
configuration (a) in Fig. 5 is only possible for h/J, < 2,
whereas the broken umbrella is allowed for all values of the
magnetic field below the saturation value. We have already
stated that this system is highly degenerate, and there is
clearly a selection mechanism at play, which selects different
configurations depending on the external magnetic field. We
emphasize that this selection is between types of configuration
that retain some degeneracy: it is not between fixed states, but
rather a submanifold of states is selected.

In order to study if the system undergoes a phase tran-
sition with temperature from the paramagnetic phase to the
different phases (corresponding to different regions previously
exposed), we perform Monte Carlo simulations at a fixed
magnetic field using the simulated annealing technique [25],
lowering the temperature as 7,41 =09 x T, up to T/J, =
1074,

We computed the specific heat per spin C as a function of
temperature for different values of the magnetic field:

(E*) —(E)
C = ©)
Typical curves for both sectors (low and high field) are shown
in Fig. 6. There are a few features that call our attention:

(i) For h/J, < 2 the specific heat shows three different
characteristics in this region (see Fig. 6, blue points). The high-
temperature regime 0.15 < 7'/J, corresponds to the param-
agnetic phase. In the intermediate regime 0.025 S T/J, <
0.15, the internal energy reaches its classical minimum value

E/N = —%(1 + M) up to a small contribution from
thermal fluctuations. Spins on plaquettes become strongly
correlated and satisfy approximately the constraint condition
Sx = h . This regime is commonly known as a cooperatwe

paramagnet (CP) or classical spin liquid [24,26]. For T'/J
0.025 there is an order-by-disorder selection of the spm
configuration shown in Fig. 5(a) indicated by areduced specific
heat C = 5/8 [4,21,24,26-29].

(ii) For h/J, > 2 at higher temperatures there is a para-
magnetic regime and for lower temperatures the spins are
canted with the magnetic field. In contrast with what happens
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transitions
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FIG. 6. Specific heat per spin as a function of temperature for
L =24-72, for h/J, = 0.8,2.5. The arrows indicate the limit of
the different phases. These transitions points are consistent with the
behavior of |S7].

for h/J, < 2 there is not a CP phase and for 7/J, < 0.03
there is another order-by-disorder selection with a specific
heat C ~ 3/4.

The limiting values of the specific heat at lower tempera-
tures and the evidence of order by disorder will be discussed
in the following subsection.

Finally, let us note that the low-temperature phases (Fig. 5)
break the Z, symmetry. To detect this phase transition we
introduce the local order parameter Oz, as

0 —42(5 +8ec—Ses —Sep).  (10)
2, — N - r,A r,.C r,B r.D)-

Following the standard procedure, the second-order transition
between the symmetric phase (large 7)) and the broken
phase (low T) may be located by the crossing point of
the corresponding susceptibility xz, and Binder cumulant
measured for different clusters. We have used instantaneous
values of Eq. (10) to measure the susceptibility xz, and Binder
cumulant Uz, associated with this order parameter defined
as

N, 2

Xz = ?((022) ), an
((0z,)%

U2 = 0 1

We illustrate this method in Fig. 7 for the transition
between the symmetric and broken Z, phase for two magnetic
fields: h/J, = 0.8,2.5. Since the critical exponent is known
precisely, n = }‘ [30], the susceptibility can be studied in the
critical region. In this region, it scales with size L as xz, =
L*7 f(|1 — £|L'/"). Therefore, the normalized susceptibility
is size indepeﬁdent at the critical temperature, and curves as a
function of L should show a crossing point. We can observe
that the curves for different L plotted as functions of 7" for both
the Binder cumulant and the normalized susceptibility exhibit
a crossing point at the critical temperature.
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FIG. 7. Transition between the symmetric and broken Z, phase
ath/J, = 0.8 (two upper panels) and i/ J, = 2.5 (two lower panels).
Binder cumulant Uz, and normalized susceptibility xz,/L*™" versus
temperature for different lattice sizes L. The error bars for each
point, which are of the order of the point sizes, were estimated from
20 independent runs initialized by different random numbers.

B. Order-by-disorder selection

As mentioned earlier, from our simulations we see that
below saturation the specific heat per spin (in units of kp) is
lower than 1 at the lower temperatures. A lower value of C
is the indication that there are modes that do not contribute
at quadratic order, which suggests the possibility of order-
by-disorder selection [4,21,24,26-29]. These modes can be
found studying the fluctuation spectrum up to quadratic order
and looking for zero eigenvalues. Those modes that do not
contribute at quadratic order, but they do at quartic order with

]% , are called soft modes [4]. There are also modes, associated
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with continuous classical degeneracies, that do not contribute
at any order: these are called zero modes [4]. The distinction
whether the zero eigenvalues of the quadratic fluctuations are
either soft or zero modes can be done inspecting the C curves
at low temperatures [4].

Taking into consideration the discussion above, we aim to
study the low-temperature selection between configurations
in our system shown in Fig. 5. This selection partially lifts
the degeneracy of the system, and a group of ground states
with continuous degeneracies is chosen depending on the
external magnetic field. We propose that this partial selection
is due to the thermal order-by-disorder mechanism. In order
to study this, we calculate the spectrum of the quadratic
fluctuations [4,21,24,26-29] for each selected ground state
manifold. If zero eigenvalues are obtained, following [4], we
inspect the specific heat curves obtained from the simulations
to determine whether these are soft or zero modes.

We calculated the energy per unit cell for the configurations
found in (a) and (c) from Fig. 5 and introduced quadratic
fluctuations for each configuration with each spin parametrized
(in their own frame) as

St = (€£(0).€(1),€4(1)), (13)

where u = A,B,C.,D, €;(r) = 1 — 3[€}(r)* + €;,(r)*], which
verifies [Sy,|* = 1 up to quadratic order. We then construct
the fluctuation matrix in the Fourier space for a unit cell of
each configuration, thus getting in each case an 8 x 8 matrix
which can be diagonalized analytically (explicit expressions
are given in the Appendix).

In the case of Fig. 5(a), the dimer phase, there are three
continuous degeneracies associated with the AF dimers in one
sublattice, and the local azimuthal rotation of each of the pairs
in the other sublattice. If we consider these associated to the
three zero eigenvalues found by the fluctuation analysis, thus
having three zero modes, we get C = 3—1(3 -0+5- %) = % =
0.625, which is the low-temperature value of C obtained in the
simulations. A larger C is expected if either one of them is a soft
mode. Notice that in Sec. II, this configuration was compared
to other possible ones. Four different possible arrangements of
spins per plaquette, including this one, were shown in Fig. 3. Of
the four cases discussed, this one is the one which retains more
degrees of freedom. At low enough temperatures, by the order-
by-disorder mechanism, the system chooses this configuration
because it has more degrees of freedom, which are reflected
as more zero modes.

In the particular case of h/J, =2 [configuration 5(b)]
there are only two continuous degeneracies and four zero
eigenvalues. We take two of them to be zero modes and two to
be soft modes, and C = %(2-04—2- }1 +4- %) = % = 0.625.
As in the dimer phase case, this mode counting reproduces the
results from the simulations.

We repeat the procedure for the high field region. Configu-
rations like Fig. 5(c) have two zero eigenvalues and there are
two continuous degeneracies. If the two zero eigenvalues are
zero modes, then again C = %(2 -0+6- %) = % = 0.75.

The specific heat obtained from the simulations as a
function of temperature was shown in Fig. 6 for two values of
the magnetic field. Figure 8 shows the specific heatat T'/J, =
1 x 1073 as a function of the magnetic field for some values of
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FIG. 8. Specific heat as a function of the external magnetic field
for J; = J, =0.2J,,0.3J,,J,/3,0.35J, obtained from Monte Carlo
simulations at 7/J, = 5 x 107*, L = 72. Lines are drawn at C =
%(0.625), %(0.75). To compare with the case of isolated dimers we
show the J; = J, = 0 curve. We observe that for J; = J, < J,/3 all
the curves have similar behavior.

the ratios J1/Jp, J,/J, (in the next section we will discuss the
system behavior outside the point J; = J, = J,/3). Dashed
horizontal lines are drawn at C = %(0.625) and %(0.75), the
low field and high field values, respectively.

For the lowest magnetic field, the specific heat per spin is
close to 1/2. Fluctuations for a planar configuration where the
systems split into two independent AF dimer sublattices have
four zero eigenvalues, which gives C = % when considered as
zero modes. If any of these values were a soft mode, a larger
C would be obtained.

The fluctuation and specific heat analysis allows us to
conclude that at J; = J, = J,,/3 the configurations selection
along the whole magnetization curve is due to the order-by-
disorder mechanism. In particular, the change of behavior of
the system at h/J, =2 is also due to this mechanism: for
h/J, < 2 there is a type of possible configuration that has
more zero modes, and is thus selected.

In the case of h/J, > 2, the system tends towards a
particular case, where two sublattices were completely aligned
with the magnetic field. To check this, we performed the
spin-wave analysis similar to one proposed by Kawamura [22]
for a general broken umbrella layout [see Fig. 5(c)]. We kept
those solutions that were physically relevant for the problem,
i.e., thatexisted for2 < h/J, < 4 and thatimplied 0 < o <
5. The minimum was found for a; =0, @y = g —1. We
conclude that in the limit of 7 — 07 this particular case of the
broken umbrella is selected.

Having discussed the different spin configurations at the
lowest temperatures, the selection mechanisms, and the spe-
cific heat, we can present the main results of our study in the
phase diagram in Fig. 9. As a background we show the density
plot of the specific heat vs temperature and magnetic field and
over this, lines indicating the edges of the different phases. The
pseudoplateau region, obtained studying the susceptibility, is
also shown. Coming from the high-temperature region, we
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FIG. 9. Phase diagram of the model given by Eq. (1) in the
strongly frustrated point J; = J, = J,/3. At higher temperatures,
there is a crossover from a conventional paramagnetic phase to a
classical spin-liquid (CSL) or cooperative paramagnet. At lower 7,
for h/J, < 2 there is an order-by-disorder selection to a “dimer”
phase [see Fig. 5(a)]. Around h/J, = 2 at low temperature there is a
pseudoplateau at M = 1/2 with configuration (b) in Fig. 5. This
is indicated in the area surrounded by a thin black dashed line.
For h/J, > 2 coming from the CSL phase there is first an order-
by-disorder selection to a broken Z, phase with spin configuration
(c) of Fig. 5(c). In the limit 7 — O, for 2/J, > 2 there is a new
order-by-disorder selection inside the manifold of ground states given
by Fig. 5(c).

have a crossover from a conventional paramagnetic phase to a
cooperative paramagnet.

The edge between the conventional paramagnetic phase to
a CP phase is indicated by a crossover in the specific heat curve
(see Fig. 6).

Lowering the temperature even more, for the low field
region there is a second-order transition corresponding to
an order-by-disorder selection to a phase with broken Z,
symmetry. This dimer phase consists of two sublattices of
spin pairs, where one pair satisfies the ground state plaquette
condition and the other one is free (AF dimer). The transition
between the CP and the dimer phase is manifested by a peak in
the specific heat and by the point where the Binder cumulant
and the order parameter susceptibility curves cross for different
sizes.

Around the special value of the magnetic field 2/J, = 2, at
low temperatures a not fully collinear pseudoplateau stabilizes
at M = 1/2 where there is an alternation of pairs of spins
polarized with the magnetic field and pairs in the AF dimer
state.

For higher magnetic fields, coming from the paramagnetic
phase we have an order-by-disorder selection to a broken 2,
phase with a “broken umbrella-like” configuration. As in the
low field region, this transition is manifested by a peak in the
specific heat and by the point where the Binder cumulant and
the order parameter susceptibility curves cross for different
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sizes. In the limit 7 — 0 and h/J, > 2 there is a new order-
by-disorder selection inside the manifold of ground states,
where a pair of spins is completely aligned with the magnetic
field.

IV. WEAKLY FRUSTRATED REGION J, = J, < J,/3

In this section, we extend the above analysis to J; = J, <
Jp/3. The spherical approximation suggested that for this
range the ground state is degenerate. This range of couplings
corresponds to the Hamiltonian presented in Eq. (2), which
is valid along the whole line J; = J, in parameter space.
Minimizing with respect to the total spin of the opposite pairs
per plaquette, P ;, we obtain the ground state condition:

J h
TPa.+ Py — 3 =0, (14)

J, h
FPms+ JiPm. — 3 =0, (15)

We focus on the solutions for J; # J,/3, since the highly
frustrated point has been discussed in the previous section.
These are

h

Py, =, 16
ST, 430 (10

Py, =P, =0, (17

Py, =Py, [PE|=\4—(PL) (8

where we have decomposed each spin pair vector in the
projection along and perpendicular to the magnetic field:
Pr; = P%,i + P%,i'

Evaluating the energy, it can be seen that for J, = J, <
J,/3 the solution for the projection of the spin dimers
perpendicular to the external magnetic field is that on Eq. (17),
which is that each pair has a zero projection in the xy plane.
This implies that in each spin pair the components parallel to
the external field are fixed, but those in the orthogonal plane
cancel out and thus there is an azimuthal freedom in each
pair. This configuration is the one illustrated in Fig. 3(a).
For J; = J; > J,/3, the lowest energy is found for fixed
components, Eq. (18), as shown in Fig. 3(b).

Following the discussion for the highly frustrated point,
through simulations we study the magnetization curves, the
scalar products, and the specific heat for different values
of the couplings along the J; = J, line to see if there is
a state selection at low temperatures. In Fig. 10 we show
the magnetization curves for J; = J, =0.2J,and J; = J, =
0.3J, compared with J; = J; = J,/3 and with a higher value
Ji = J, =0.35J, > J,/3. We see that there is no particular
feature in the curves for any value of the couplings, besides
the pseudoplateau at J; = J, = J,/3 that has been shown
and discussed in the previous section. Results for the average
scalar product (S;; - Sy ;) are shown in Fig. 11 for two values
that satisfy J; = J, < J,/3 [(a),(b)] to be compared with
Ji=Jy=Jp/3 (¢c)and Jy = J, =0.35J, > J,/3 (d). The
behavior matches the calculations described above. The spins
all have the same S, component, thus the system behaves

or
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FIG. 10. Magnetization curves for J; =J, =0.2J,,0.3J,,
J,/3,0.35J, obtained from Monte Carlo simulations for L =72,
T/J,=1x 1073, Magnetization, absolute value of the magneti-
zation, and susceptibility are shown in each case. It can be seen
that the only distinct behavior is that of the highly frustrated point
Ji=Jo=J,/3.

effectively as an xy model with zero magnetization between
opposite pairs. There is no particular selection among these
configurations, up to the temperatures presented in this work.
Inthe J; = J; > J,/3 case, spins connected by J,, are parallel
along all the magnetization curve. This phase is simply an
effective planar configuration where each layer is an xy Néel.

FIG. 11. Average scalar product (S, - S, ;) = (ij) curves (i,j =
A,B,C,D in the legend) for J,/J, = J./J, = 0.2 (a), 0.3 (b), 1/3
(c), and 0.35 (d) obtained from Monte Carlo simulations for L = 72.
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The configurations for the low frustrated case have an
azimuthal degree of freedom that should be seen as zero
modes in the specific heat. Example curves for L = 72 at
T/J,=107% J, = J, =0.2J,,0.3J, are shown in Fig. 8.
Results for Ji = Jy =J,/3 and J; = J, =035/, > J,/3
are also shown for comparison. The specific heat for the lower
values of the couplings is C ~ 3/4, which agrees with that
of the strongly frustrated point at the higher magnetic fields
for the strongly frustrated point. However, in this case there is
no order by disorder [31]. This decrease in the specific heat
is due to the presence of two zero modes in the ground state
(continuous degeneracies associated with azimuthal rotation
of each pair joined by J,). For comparison, the specific heat
for J; = J, =0.35J, > J,/3 is C ~ 1, which implies that
there are no zero or soft modes. Quadratic fluctuations have
no zero eigenvalues.

Finally, in Fig. 8 we also show the specific heat curve for the
case of isolated classical dimers (J; = J, = 0). Inspection of
the specific heat and the scalar products between (Fig. 11) for
Ji = J < Jp/3, show aremarkable similarity to this extreme
case, suggesting that in all the range J; = J, < J,/3 the
system behaves as a classical dimer lattice.

V. CONCLUSIONS

In summary, we have studied the phase diagram of the
classical Heisenberg Ji-J.-J, antiferromagnetic model on
a bilayer honeycomb lattice in a magnetic field. Using a
combination of analytical considerations and classical Monte
Carlo, we have found a very rich low-temperature phase
diagram for the strongly frustrated point J,/3 = J; = J,,
which is summarized in Fig. 9. The phase diagram features
three nontrivial regions characterized by broken lattice sym-
metries and different entropic order-by-disorder selection.
These selections partially lift the ground state degeneracy,
since the chosen phases retain different degrees of freedom,
which contribute with zero and soft modes, for different values
of the external magnetic field.

Coming from the high-temperature region we observe
a crossover from a conventional paramagnetic phase to a
cooperative paramagnet (CP). The boundary between the
paramagnetic phase to a CP is shown by a smooth but a
clear crossover in the specific heat (see Fig. 6). Lowering
the temperature even more, in the low field region h/J, < 2
there is an order-by-disorder selection to a phase with broken
Z,. In this dimer phase one couple of opposite spins is canted
with the magnetic field and the other pair is antiparallel and
random corresponding to a kind of “free AF dimer state” [see
Fig. 5(a)]. The transition between the CP and the dimer phase
is manifested by a peak in the specific heat (see Fig. 6).
By the computation of the Binder cumulant and the order
parameter susceptibility we have numerically checked that this
is a second-order phase transition where 2, is broken.

Around h/J, =2, a not fully collinear classical 1/2-
magnetization plateau is stabilized at low temperature. This
new kind of classical plateau is in strong contrast to the fully
collinear classical plateau states in the frustrated lattice as in
the triangular [22] and honeycomb [32] cases. This remarkable
property is due to the very large configurational degeneracy of
the system of frustrated “classical spin dimers.” The stabilized
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structure [Fig. 5(b)] consists of alternation of polarized and
antiparallel spin pairs in the plateau phase which breaks the
Z, symmetry between two sites in a unit cell of the honeycomb
lattice.

For h/J, > 2 coming from the cooperative paramagnet
phase, we have first an order-by-disorder selection to a
broken Z, phase with a broken umbrella configuration [see
Fig. 5(c)], which was confirmed by the analysis of the
order parameter susceptibility and the Binder cumulant as a
continuous transition. In the limit 7 — 0 and i /J, > 2 there
is a new order-by-disorder selection inside the manifold of
ground states given by Fig. 5(c), where a pair of spins is
completely aligned with the magnetic field.

Finally, along the J; = J, line the system can be effec-
tively described as a function of opposite spin pairs. The
configurations for J; = J; > J,/3 are fixed, whereas for the
less frustrated region J; = J, < J,/3 the ground state is
degenerate. The system behaves as an effective xy model and
retains an azimuthal degeneracy in opposite spin pairs. These
zero modes give a lower specific heat C = 3/4, but there is no
order by disorder.

We mention that the present work may be relevant
in the study of different compounds that are described
by the frustrated hexagonal Heisenberg model, such as
Bi3MH40]2(NO3) [5] with spin-3/2.
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APPENDIX: FLUCTUATION MATRICES

We analyze the fluctuations for each configuration found in
our simulations (a) and (c) from Fig. 5 [the configuration (b)
its just a special case of (a)]. We parametrize the spins with
the same angles as in Fig. 5, so that

Sg"g = {o cos B rsinay,o sin By sinay, cosay},

S(r“I)L = o{cos By.r Siny, sin By r sin o, COS 22},

(A1)
Sgc)v = {0 cos B rsinw;,o sin By sinay, cos o },
S(FCL = {0 cos By sinay,0 sin By sinay, cos o},

where B; , can be different in each plaquette, v = A,C, u =
B,D, and o = + for sites A,B and o0 = — for C,D. Under
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fluctuations their new coordinates are expressed in their own
frame as

x x \2 b, \2
SI‘,U = {er,\)’ei}i\)’]‘ - %[(El’,\)) + (El)‘,\)) ]} (Az)
is verifying the condition |S;,|> = 1 up to quadratic order.
Following Ref. [27] the Hamiltonian, in the Fourier space, is
expanded up to second order in spin deviations as

H=Eo+) ¥k M- W), (A3)
K
where the vectors W (k) read
W(k) = {Elf,AﬁiZ,Avéﬁ,cfl{,c’Eﬁ,Bveﬁ,B’Eﬁ,D’elf,D}-
In Eq. (A3) the 8 x 8 matrix M can be written as
m m
M= [ %1 12]’ (Ad)
mp my

where the complex 4 x 4 matrices m;; depend of the angles in
the spin configuration.

In the low magnetic field region [configuration (a)], the
matrices m;; can be written in a compact form using the
Kronecker product as

myp=09®oy+0, R [Cos(oz)2 oy — sin(a)zoz], (AS)

mpy = 0y ® o) — Oy ® (F ) (A6)
Cap CytSap  —CoSy  —CofCy—Sap  —CaSy
Yk CpSy Cy —CpSy Cy
mp = — )
3| capey—Sap  —CaSy —CopCyptSap  —CasSy
CpSy Cy —CgSy Cy
(A7)

where oy is the 2 x 2 identity matrix and o, (@ = x,y,z) are the
Pauli’s matrices; cqg = cosa cos B, sqp = sina sin 8, ¢, =
cosa, s, = sina (same for §,y).

In the high field region [configuration (c)], we have

mi; = 0y ® 0 + 0 & 0y, (AB)

my = 0y ® 0 + 0, ® [cos(B) oy — sin(B)’o;], (A9)

CpCy =S8y Cgly  —Sy
cgs c cgs c
mp = Vi | cpsy Y B3y Y (A10)
3¢y TSy CpCy TSy

CgSy Cy CpSy Cy
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