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We investigate the large-time scaling regimes arising from a variety of metastable structures in a chain of
Ising spins with both first- and second-neighbor couplings while subject to Kawasaki dynamics. Depending on
the ratio and sign of these former, different dynamic exponents are suggested by finite-size scaling analyses of
relaxation times. At low but nonzero temperatures these are calculated via exact diagonalizations of the evolution
operator in finite chains under several activation barriers. In the absence of metastability the dynamics is always
diffusive.
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I. INTRODUCTION

Systems whose thermodynamic parameters are drastically
changed give rise to highly nonlinear and far from equilibrium
processes that have been intensively studied for decades in
various contexts [1]. These may range from binary fluids to
alloys and spin systems exhibiting a disordered phase at high
temperatures, while having two or more ordered phases below
a critical point [1,2]. There is already a vast body of research
studying such nonequilibrium problems in terms of kinetic
Ising models [1–3] under both Glauber and Kawasaki dynam-
ics [4,5], respectively associated with the so called models A

and B in the terminology of critical dynamic theories [6]. After
a quench to a subcritical temperature these dynamics attempt to
minimize the interfacial energy between different equilibrium
domains which therefore grow and coarsen with time. At late
stages the spreading of domains is such that if their typical
lengths are rescaled by a factor t−1/z the domain patterns at
different times will be statistically similar. Here, the scaling or
dynamic exponent z is characteristic of the universality class
to which the dynamic belongs, and is usually independent of
the spatial dimensionality but sensitive to conservation laws
(see, e.g., [1,2,6,7] and references therein).

For one-dimensional (1D) systems these dynamics are also
amenable to experimental probe [8]. In particular, the magnetic
relaxation of synthesized molecular chains with strong Ising
anisotropy [9] was considered in the framework of Glauber
dynamics with both first- and second-neighbor interactions
J1,J2 [10]. In that regard, recently it was suggested that weak
competing regimes in the low- but nonzero-temperature limit
(T = 0+) give rise to an almost ballistic dynamic exponent
(z � 1) [11] rather than the usual diffusive value of z = 2 [1,4].
Irrespective of how small the frustration might be, note that
for 0 < −J2 < |J1| such discontinuous scaling behavior is
also accompanied by the sudden appearance of a large basin
of metastable states [12]. When it comes to ferromagnetic
Kawasaki dynamics, these latter already exist for J2 = 0 and
are characterized by kinks or domain walls separated by two
or more lattice spacings [7,13]. In that situation the mean
density of kinks reaches a finite value [14], and so the average
size of metastable domains cannot but remain bounded. At
zero temperature the dynamics rapidly gets stuck in these
states—thus preventing the system to reach equilibrium—but
for T = 0+ their structure is at the origin of the t1/3 growth of

domain length scales [13,14]. Despite metastability, note that
as long as temperature is held finite, no matter how small, the
dynamics is still ergodic and eventually the equilibrium state
is accessible.

Continuing the development initiated in Ref. [11], in this
work we further investigate the metastable effects brought
about by second neighbor couplings on the scaling regimes
of this typical phase separation dynamics. As we shall see,
for J2 �= 0 there are new metastable scenarios and activation
barriers that come into play, ultimately affecting the large time
kinetics in the low-temperature limit.

Following the methodology of Ref. [11], first we will con-
struct and diagonalize numerically the kink evolution operator
associated to the master equation [15] of this dynamics in
finite chains. This will enable us to determine the relaxation
time (τ ) of these processes from the spectral gaps of that
Liouvillian operator. As is known, in nearing a critical point
those time scales diverge with the equilibrium correlation
length as τ ∝ ξz [6], which in the present context also grows
unbounded in the limit of T → 0+ (except for J2 = −|J1|/2
where the ground state is highly degenerate and ξ remains
finite [16]). On the other hand, in a system of typical length L

evidently ξ cannot grow beyond that scale; hence in practice
it is customary to trade that scaling relation by the finite-size
behavior

τ ∝ Lz, (1)

provided L is taken sufficiently large [17]. Thus, once armed
with the above referred spectral gaps we will aim at obtaining
dynamic exponents from this finite-size scaling relation across
a host of metastable situations. At low but nonzero tempera-
tures, however, notice that owing to the presence of Arrhenius
activation energies the time scales involved are unbounded
even for finite systems (cf. Sec. IV).

The structure of this work is organized as follows. In
Sec. II we recast the master equation of these stochastic
processes in terms of a quantum spin analogy that readily
lends itself to evaluate the low lying levels of the associated
evolution operator. Owing to detailed balance [15] this latter
can be brought to a symmetric representation by means
of simple nonunitary spin transformations, thus simplifying
the subsequent numerical analysis. Section III describes
various metastable regimes while attempting to identify their
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decay patterns and activation barriers. Calculational details
regarding the proliferation rates of these states with the
system size are relegated to the Appendix. In Sec. IV we
evaluate numerically the spectrum gaps of finite chains using
standard recursive techniques [18] which yield clear Arrhenius
trends for relaxation times at low-temperature regimes. This
provides a sequence of finite-size approximants to dynamic
exponents which are then combined with extrapolations to
the thermodynamic limit [17,19]. Finally, Sec. V contains a
summarizing discussion along with some remarks on open
issues and prospects of future work.

II. DYNAMICS AND OPERATORS

Let us consider Kawasaki dynamics in a chain of Ising
spins (S = ±1) coupled with both first- and second-neighbor
interactions J1,J2, thus setting energy configurations

ES = −J1

∑
i

Si Si+1 − J2

∑
i

Si Si+2, (2)

while in contact with a heat bath at temperature T . Here,
frustration arises when combining antiferromagnetic (AF) J2

couplings (J2 < 0) with J1 exchanges of any sign. In particular,
for −J2/|J1| > 1/2 the ground state consists of consecutive
pairs of oppositely oriented spins (· · · • • ◦ ◦ · · · ), while for
0 � −J2/|J1| < 1/2 the ordering is ferromagnetic (F) or AF
depending on the respective sign of J1. For J2 > 0 there is no
frustration and the order type is also set by J1. Unless otherwise
stated, periodic boundary conditions (PBCs) and a vanishing
magnetization will be assumed throughout.

The bath is represented as causing the Ising states |S 〉 =
|S1, . . . ,SL〉 to fluctuate by exchanges of nearest neighbor
(NN) spin pairs chosen randomly from L locations. To
enforce the system to relax towards the Boltzmann distribution
PB(S) ∝ e−ES/kBT , the transition probability rates per unit
time W (S → S ′) between two configurations |S〉,|S ′〉 (here
differing just in an exchanged pair of NN spins) are chosen to
satisfy the detailed balance condition [15]

PB(S) W (S → S ′) = PB(S ′) W (S ′ → S) (3)

(also, see its role by the end of Sec. II A). However, detailed
balance itself cannot determine entirely the form of such rates,
thus in what follows we take up the common choice used in
the context of kinetic Ising models, namely [20]

W (S → S ′) = α

2

{
1 − tanh

[
β

2
(ES ′ − ES)

]}
, (4)

where α−1 just sets the time scale of the microscopic process,
and is hereafter set to 1. Also, from now on temperatures
are measured in energy units, or, equivalently, the Boltzmann
constant in β ≡ 1/(kBT ) is taken equal to unity. In the
specific case of spin exchanges, say at locations i,i + 1,
clearly from Eq. (2) the above energy differences reduce
to 1

2 (Si − Si+1)[(J1 − J2)( Si−1 − Si+2,) + J2( Si−2 − Si+3 )].
Thus, after introducing the parameters

P = 2(K1 − K2), Q = 2(K1 − 2K2), (5a)

A± = ± 1
8 (tanh 2K1 − tanh Q) + 1

4 tanh 2K2, (5b)

B± = ± 1
8 (tanh 2K1 + tanh Q) + 1

4 tanh P (5c)

(K1,2 ≡ J1,2/T ), and using basic properties of hyperbolic
functions, it is a straightforward matter to verify that the
exchange rates W (Si, Si+1) associated to those locations
actually deploy multispin terms of the form

W (Si, Si+1) = 1
4 (1 − Si Si+1) − 1

4 (Si − Si+1)

× [(A+ + A− Si−1 Si+2)(Si−2 − Si+3)

+ (B+ + B− Si−2 Si+3) (Si−1 − Si+2)], (6)

which already anticipate the type of many-body interactions to
be found later on in the evolution operator of Sec. II A. Here,
the factors (1 − Si Si+1) and (Si − Si+1) ensure vanishing rates
for parallel spins while contributing to reproduce Eq. (4) for
antiparallel ones. Also, note that although the standard case
of J2 = 0 is left with terms of just two-spin interactions, its
dynamics is not yet amenable for exact analytic treatments at
T > 0 [21].

The range of the sites involved in Eq. (6), or equivalently,
in the energy differences of Eq. (4), basically distinguishes be-
tween eight situations of spin exchanges. For later convenience
we now regroup them in two sets of dual events in which kinks
or ferromagnetic domain walls are thought of as hard core par-
ticles A undergoing pairing ∅ + A + ∅ � A + A + A, and
diffusion A + A + ∅ � ∅ + A + A processes, as schema-
tized in Table I. Its columns also summarize the information
needed to construct the operational form of the dynamics,
while allowing us to infer the variety of metastable structures
alluded to in Sec. I. In what follows we turn to the first of these
issues, and defer the discussion of the second to Sec. III.

Quantum spin representation

As is known, in a continuous time description of these
Markovian processes the stochastic dynamics is controlled
by a gain-loss relation customarily termed as the master
equation [15]

∂t P (S,t) =
∑
S ′

[W (S ′ → S)P (S ′,t) − W (S → S ′)P (S,t)],

(7)
which governs the time development of the probability
distribution P (S,t). Conveniently, this relation can also be
reinterpreted as a Schrödinger equation in imaginary time,
i.e., ∂t |P (t)〉 = −H |P (t)〉 under a pseudo-Hamiltonian or
evolution operator H . This is readily set up by defining
diagonal and nondiagonal matrix elements [3,15]

〈S|Hd |S〉 =
∑
S ′ �=S

W (S → S ′), (8a)

〈S ′|Hnd |S〉 = −W (S → S ′), (8b)

thus formally enabling us to derive the state of the system
|P (t)〉 ≡ ∑

S P (S,t)|S〉 at subsequent times from the action of
H on a given initial condition, that is |P (t)〉 = e−Ht |P (0)〉. In
particular the relaxation time τ of any observable with nonzero
matrix element between the steady state and the first excitation
mode of H is singled out by the eigenvalue λ1 corresponding to
that latter, i.e., 1/τ = Reλ1 > 0, whereas by construction the
former merely yields an eigenvalue λ0 = 0 [15]. Note that the
numerical analysis of these spectral gaps (or inverse relaxation
times) will first require us to obtain an operational analog of
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TABLE I. Kawasaki transition probabilities, energy changes, and symmetrized (S) nondiagonal matrix elements of the evolution operator
transformed as in Eq. (14), for both kink pairing and diffusion processes under J1 and J2 interactions. Filled and empty circles denote original
spins with opposite orientations in turn conforming kinks (vertical lines) on the dual chain. Upper and lower signs stand respectively for the
forward (→) and backward (←) processes brought about by exchanging NN spins around central kinks. All events are classified according to
the projector types defined in Eq. (9).

Pairing ∅ + A + ∅ � A + A + A Rate (�) β�E (�) S element Projector

• • • | ◦ ◦ ◦ � • • | ◦ | • | ◦ ◦ 1
2 (1 ∓ tanh 2K1 ) ±4K1

1
2 sech 2K1 P (1)

◦ | • • | ◦ ◦ ◦ � ◦ | • | ◦ | • | ◦ ◦ 1
2 (1 ∓ tanh P ) ±2P 1

2 sech P P (2)

• • • | ◦ ◦ | • � • • | ◦ | • | ◦ | • 1
2 (1 ∓ tanh P ) ±2P 1

2 sech P P (3)

◦ | • • | ◦ ◦ | • � ◦ | • | ◦ | • | ◦ | • 1
2 (1 ∓ tanh Q) ±2Q 1

2 sech Q P (4)

Diffusion A + A + ∅ � ∅ + A + A Rate (�) β�E (�) S element Projector

◦ ◦ | • | ◦ ◦ ◦ � ◦ ◦ ◦ | • | ◦ ◦ 1/2 0 1/2 P (1)

• | ◦ | • | ◦ ◦ ◦ � • | ◦ ◦ | • | ◦ ◦ 1
2 (1 ∓ tanh 2K2 ) ±4K2

1
2 sech 2K2 P (2)

◦ ◦ | • | ◦ ◦ | • � ◦ ◦ ◦ | • | ◦ | • 1
2 (1 ± tanh 2K2 ) ∓4K2

1
2 sech 2K2 P (3)

• | ◦ | • | ◦ ◦ | • � • | ◦ ◦ | • | ◦ | • 1/2 0 1/2 P (4)

Eqs. (8a) and (8b), as the phase-space dimension of these
processes grows exponentially with the system size. That will
allow us to implement the recursive diagonalization techniques
of Sec. IV, where the matrix representation of H is not actually
stored in memory [18].

On the other hand, to halve the number of machine
operations it is convenient here to turn to a dual description
in which new Ising variables σi ≡ −Si Si+1 standing on dual
chain locations denote the presence (+1) or absence (−1) of
the kinks referred to above. Thus, if we think of the states
| σ1, . . . σL〉 as representing configurations of 1

2 -spinors (say
in the z direction), we can readily construct the counterpart
of the above matrix elements by means of usual raising and
lowering operators σ+, σ−. Clearly, the nondiagonal parts
H

(pair)

nd ,H
(diff)

nd accounting for the kink pairing and diffusion
processes depicted in Table I must involve respectively terms
of the form σ±

i−1 σ±
i+1 and σ±

i−1 σ∓
i+1, say, for events occurring

at locations i − 1,i + 1 under the presence of a central kink.
However, due to the J2 couplings, note that these terms should
also comprise the kink occupation n̂ ≡ σ+σ− = 1

2 (1 + σ z)
and vacancy v̂ ≡ 1 − n̂ numbers of second neighbor sites
surrounding that central kink, as these also matter in the rate
values of Table I. Thus, to weight such correlated processes
here we classify them according to projectors defined as

P̂ (1)
i = v̂i−2n̂i v̂i+2, P̂ (2)

i = n̂i−2n̂i v̂i+2,

P̂ (3)
i = v̂i−2n̂i n̂i+2, P̂ (4)

i = n̂i−2n̂i n̂i+2, (9)

to which in turn we assign the variables {x1,x2,x3,x4} ≡
{2K1,P ,P,Q}, and {y1,y2,y3,y4} ≡ {0,2K2, − 2K2,0}.
Therefore, with the aid of these latter, the contributions of
the pairing and diffusion parts to the operational analog of
Eq. (8b) can now be written down as

H
(pair)

nd = −
∑
i,j

P̂ (j )
i [f (xj )σ−

i−1σ
−
i+1 + f (−xj )σ+

i+1σ
+
i−1],

(10a)
H

(diff)

nd = −
∑
i,j

P̂ (j )
i [f (yj )σ+

i−1σ
−
i+1 + f (−yj )σ+

i+1σ
−
i−1],

(10b)

where f (u) ≡ 1
2 (1 + tanh u), and the j index runs over the

four types of projectors specified in Eq. (9).
When it comes to the diagonal terms associated with

Eq. (8a), in turn needed for conservation of probability, notice
that these basically count the number of manners in which
a given configuration can evolve to different ones in a single
step. In the kink representation this amounts to the summation
of all pairing and diffusion attempts that a given state is
capable of. As before, these attempts also can be probed
and weighted by means of the above projectors, vacancy,
and number operators, in terms of which those diagonal
contributions are expressed here as

H
(pair)

d =
∑
i,j

P̂ (j )
i [f (−xj )n̂i−1n̂i+1 + f (xj )v̂i−1v̂i+1], (11a)

H
(diff )

d =
∑
i, j

P̂ (j )
i [f (−yj )v̂i−1n̂i+1 + f (yj )n̂i−1v̂i+1]. (11b)

Thus, after simple algebraic steps and using the A±, B±
parameters defined in Eqs. (5b) and (5c), the net contribution
Hd = H

(pair)

d + H
(diff)

d of these diagonal terms is found to
involve two-, three-, and four- body interactions of the form

Hd = 1

4

∑
i

(
1 + σ z

i

)[
1 + (

B+ − B−σ z
i−2σ

z
i+2

)(
σ z

i−1 + σ z
i+1

)
− (

A+σ z
i−1 − A−σ z

i+1

)
σ z

i−2+
(
A−σ z

i−1−A+σ z
i+1

)
σ z

i+2

]
,

(12)

some of which had already appeared at the level of the original
spin rates mentioned in Eq. (6).

Detailed balance. Further to the correlated pairing and
diffusion terms of Eqs. (10a) and (10b) which would leave
us with a nonsymmetric representation of the evolution
operator, we can make some progress here by exploiting
detailed balance [Eq. (3)]. This latter warrants the existence
of representations in which H is symmetric and thereby fully
diagonalizable [15]. For our purposes, it suffices to consider
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the diagonal nonunitary similarity transformation

T = exp

[
1

2

∑
i

(
K1σ

z
i + K2σ

z
i σ z

i+1

)]
, (13)

stemming from the original spin energies of Eq. (2) but re-
expressed in terms of kinks, i.e., Eσ = ∑

i (J1σi + J2σiσi+1).
Hence T|σ 〉 = e(β/2)Eσ |σ 〉, implying that the nondiagonal
matrix elements of TH,T−1 will transform as

W (σ → σ ′) → e(β/2)(Eσ ′−Eσ )W (σ → σ ′). (14)

But since in the kink representation W (σ → σ ′) also comply
with the detailed balance condition (3), then clearly these
elements become symmetric under T (see the symmetrized
elements of Table I). Equivalently, under Eq. (13) the pairing
and diffusion operators involved in Eqs. (10a) and (10b) will
transform respectively as

σ±
i−1σ

±
i+1 → exp

[ ± K2
(
σ z

i−2 + 2σ z
i +σ z

i+2

) ± 2K1
]
σ±

i−1σ
±
i+1,

(15a)

σ±
i−1σ

∓
i+1 → exp

[ ± K2
(
σ z

i−2 − σ z
i+2

)]
σ±

i−1σ
∓
i+1, (15b)

while leaving Hd and all projectors of Eq. (9) unchanged.
Thus, after introducing the C± and D coefficients

C± = 1
2 (sechQ + sech2K1) ± sechP, (16a)

D = 1
2 (sechQ − sech2K1), (16b)

it is straightforward to check that the symmetric counter-
parts of H

(pair)

nd and H
(diff)

nd are then given by

H(pair)

nd = −1

8

∑
i

(
1 + σ z

i

)[
C+ + D

(
σ z

i−2 + σ z
i+2

)
+C−σ z

i−2σ
z
i+2

](
σ+

i−1σ
+
i+1 + H.c.

)
, (17a)

H(diff)

nd = −1

8
(1 + sech2K2)

∑
i

(
1 + σ z

i

)
× (

1 + tanh2 K2σ
z
i−2σ

z
i+2

)(
σ+

i−1σ
−
i+1 + H.c.

)
. (17b)

Together with Eq. (12) this completes the construction of
the operational analog of Eqs. (8a) and (8b) in a Hermitian
representation. In passing, it is worthwhile to point out that
all the above non diagonal operators not only preserve the
parity of kinks eiπ

∑
j n̂j (being even for PBCs), but that they

also commute, by construction, with
∑

j eiπ
∑

k<j n̂k , which
simply re-expresses the conservation of the total spin mag-
netization in the original system. In practice, for the numerical
evaluation of spectral gaps (Sec. IV) we will just build up
the adequate basis of kink states from the corresponding spin
ones.

III. METASTABLE STATES

After an instantaneous quench down to a low but nonzero
temperature often this stochastic dynamics rapidly reaches a
state in which further energy-lowering processes are unlikely.
This is because the configuration space contains “basins”

of local energy minima from which the chances to access
lower energy states must first find their way through a typical
“energy barrier” Eb. In the limit of T → 0+ the average time
spent in these configurations, or metastable (M) states, then
diverges with an Arrhenius factor eβEb . In common with the
standard ferromagnetic dynamics, here the decay from these
M configurations is mediated by diffusion of kink pairs. In
particular, for J2 = 0 their release requires activation energies
of 4J1 which at low temperatures involves time scales ∝ e4K1

(see pairing rates of Table I). As a result of the diffusion of
these pairs, entire ferromagnetic domains can move rigidly by
one lattice spacing [14]. Following an argumentation given in
Refs. [7,13], the repeated effect of that rather long process
ultimately leads to coarsening of domains, and is at the root of
their t1/3 growth [14].

For J2 �= 0 however there are other energy barriers that
also come into play, so the identification of a net Arrhenius
factor in the actual relaxation time is less straightforward. In
addition, due to the discontinuities already appearing at the
level of transition rates (specifically at J2/J1 = 0,1/2,1 in
the limit of T → 0+), note that there are several coupling
regimes where that identification must be carried out. As we
shall see, that will prove very helpful in the finite-size scaling
analysis of Sec. IV, thus here we focus attention on the variety
of M structures arising in the coupling sectors (a)–(h) listed
in Table II. Reasoning with Table I and guided by simulated
quenches down to T = 0, we turn to the characterization of
these structures while trying to identify their decay patterns.
Also, a measure of the basin of these states, such as the rate
at which they proliferate with the system size, is provided
with the aid of the Appendix. The results of the arguments
and observations that follow in this section are summarized in
Table II.

(a) and (b). In these two first coupling sectors the kinks
of all M states must be separated by at least one vacancy
because in the pairing rates of Table I both P and K1 are
positive. However, note that in sector (b) sequences of the
form . . . 10101 . . . could not show up because there Q � 0
(see fourth pairing process of Table I). As is indicated in
the Appendix this further constraint (schematized in Table II)
significantly reduces the proliferation of M states with respect
to sector (a). For this latter the number of M configurations
turns out to grow as gL with golden mean g ∼ 1.618, whereas
for sector (b) it grows only as ∼1.5701L.

As mentioned above, on par with the usual dynamics of
J2 = 0 the low-temperature decay from either of these struc-
tures involves the diffusion of kink pairs between otherwise
isolated domain walls [14]. However, notice that for J2 > 0
this requires the occurrence of two successive and rising energy
events (cf. Table I) namely, pairing around an existing wall
(�E = 4J1) followed by detachment of neighboring pairs
from the triplets so formed (�E = 4J2). This allows the kink
pair to diffuse at no further energy cost until eventually a
new wall is encountered and the energy excess is rapidly
released [14]. The net thermal barrier of this composite process
is therefore βEb = 4(K1 + K2), thus setting arbitrarily large
relaxation time scales in the low-temperature limit, even for
finite lattices. We will again find these time scales later on in
the exact diagonalizations of Sec. IV A. Yet, it remains to be
determined whether the above reduction of metastability (as
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TABLE II. Schematic configurations of metastable states (in dual representation) for several coupling regimes (here r ≡ J2/J1). The former
are composed by constrained sequences of kinks and vacancies (k,v) as indicated by brackets. Proliferation rates of these configurations with
the system size (calculated in the Appendix), along with activation energy barriers associated to their relaxation times, are quoted on the
rightmost columns. Free diffusion of kink pairs (�E = 0) between jammed sequences may occur in cases (g) and (h) (see text for details).

Coupling regime Typical M state Rates (∼xL) Barrier (βEb ∝ ln τ )

(a) J1,J2 � 0, 0 � r < 1
2 1 0 · · ·

v �1

1 0 · · · 1.6180 4(K1 + K2)

(b) J1,J2 > 0, 1
2 � r < 1 1

v or v′ > 1

0 · · ·
v �1

1 0 · · ·
v′ �1

1 · · · 1.5701 4(K1 + K2)

(c) J1 = J2 > 0 1 0 · · ·
v �2

1 0 · · · 1.4655 4(K1 + K2)

(d) J2 > J1 > 0 1 · · ·
k �=2,3

0 · · ·
v �2

1 · · · 1.6180 4(K1 + K2)

(e) J1 < 0, J2 > 0 1 · · ·
k �3

0 · · ·
v �2

1 · · · 1.5289 4K2

(f) J1,J2 < 0, 1
2 < r � 1 1 · · ·

k =1,2

0 1 · · · 1.3247 −4K2

(g) J2 < J1 < 0

v or v′= 1, if k =1

0 · · ·
v �1

1 · · ·
k =1,2

0 · · ·
v′ �1

1 · · · 1.7437 4(K1 − 2K2)

(h) J1 > 0, J2 < 0 1 · · ·
k =1,2

0 · · ·
v �1

1 · · · 1.8392 4(K1 − 2K2)

well as that of the following case), is of any consequence for
dynamic exponents.

(c). Here Q < 0 but now P = 0, implying that kinks must
at least be separated by two vacancies. Otherwise, the isolated
vacancies involved both in the second and third processes
of Table I would alternately originate a random walk of
pairings at no energy cost until encountering another kink.
Then the walk could no longer advance, and eventually after
few but energy- decreasing processes the isolated vacancy
would be finally canceled out. This constraint brings about
even further reductions in the number of M states which
actually now grows as ∼1.4655L (see the Appendix). However,
this new minimum separation of kinks has no effect in the
decay pattern mentioned in the previous two cases, so here
the Arrhenius factors can also be expected to diverge as
e4 (K1+K2). As before, this will be corroborated in Sec. IV A.

(d). In this coupling regime P and Q are both negative,
meaning that groups of four or more consecutive kinks, i.e.,
AF spin domains, may well show up in these new M states
(see Table I). Also, since K1 > 0 isolated kinks can still
appear scattered throughout. In turn, these latter as well as
all AF domains must be separated by at least two vacancies,
otherwise, as indicated in Table I, the energy would decrease
further. On the other hand, it turns out that similarly to sector
(a) the number of M states here also proliferates with the
golden mean as gL (see the Appendix).

When it comes to energy barriers, at a first stage on
time scales τ

P
∝ e−2P , and so long as J2 < 2J1, most AF

domains can disgregate by pair annihilations followed by
energy- decreasing processes. The steps involved may be
schematically represented as (say, starting from the leftmost
triplet)

· · · 0 0 1 1 1 1 1 1 · · ·�Ei > 0
−→ · · · 0 0 0 1 0 1 1 1 · · · �E = 0

−→ · · · 0 0 0 1 1 1 0 1 · · · �Ef < 0
−→ · · · 0 0 0 0 1 0 0 1 · · · ,

where β �Ei = −2P , and β �Ef = −4K1. (Note that anni-
hilations around innermost kinks would require even larger
time scales of order e−2Q because |Q| > |P | throughout this
regime.) Since at low temperatures τ

P
� e4K1 the process can

recur and eventually the entire AF domain can be disaggre-
gated on times ∝ τ

P
. However, for J2 � 2J1 that process

could no longer advance within those time scales. Instead,

disgregation simply proceeds via successive detachment of
outer pairs, each one requiring scales τ2 ∝ e4K2 � τ

P
. In either

case, these pairs can then realize a free random walk (�E = 0),
until finally annihilating with an isolated kink (�E = −4J1).
In a much later second stage, when most consecutive kinks
disappear, large vacancy regions then proceed to coarse-grain
as in previous cases [14]. As before, this ultimately requires
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time scales of order e4 (K1+K2) � τ2, τP
(cf. with spectral gaps

of Sec. IV A).
(e). Much like the previous situation, here groups of

consecutive kinks separated by two or more vacancies may
also appear in these M sequences because P, Q, and −K2 are
still negative. However, since K1 < 0 there can be no isolated
kinks, and consequently AF groups may now range from three
kinks onward (see Table I). As is shown in the Appendix, the
proliferation of M states given rise by these new constraints
turns out to grow as ∼1.5289L.

Like in the initial stages of case (d), the decay to equilibrium
(now fully AF) also proceeds through a random walk of kink
pairs which successively detach from AF domains on time
scales ∝ e4K2 [22]. As the random walk goes on, these pairs
may coalesce with others, or stick back to the same or to a
new domain (in all cases with �E � 0), until eventually some
groups get fragmented into triplets [23]. Yet, within times
∝ e4K2 these may further decompose as

· · · 0 1 1 1 0 · · · �E = 4J2−→ · · · 0 1 0 1 1 · · ·
�E < −4J2−→ · · · 1 1 1 1 1 · · · ,

say, detaching a rightmost pair from one of those triplets. Thus,
in the low-temperature limit the above process is unlikely to
reverse on these time scales, and so the process can recur in a
progressively denser medium until the full AF state is reached.
As we shall see in Sec. IV B this decay pattern, now activated
by 4J2 energies, actually brings about a faster coarsening than
those obtained in previous cases.

(f). As suggested by simulated quenches down to T = 0, for
vanishing magnetization there are no consecutive vacancies
in the M states of this regime [24]. Since here Q > 0 and
K2,P < 0, then following Table I these configurations should
be consistent with single and, at most, four contiguous kinks
scattered throughout. However, for Sz = 0 it turns out that just
single and double kinks actually show up [24]. The recursions
of the Appendix then show that these tighter constraints give
rise to a number of M states which proliferates only as
∼1.3247L.

As for the manner in which such configurations proceed to
equilibrium, contrary to the previous situations it is difficult to
identify here a specific pattern of decay. Rather, we content
ourselves with mentioning that the largest energy barrier
of these states (i.e., −4J2 actually corresponding to the
activation of diffusing pairs) turns out to be associated with
the actual relaxation times ∝ e−4K2 evaluated by the exact
diagonalizations of Sec. IV C.

(g) and (h). For these two last sectors the signs of Q and
K2 remain as in the previous case, though now P is positive.
Thus, following Table I, as before, only single and double
kinks may appear distributed throughout but now they can
be separated by one or more vacancies, even for Sz = 0.
Thereby, kink pairs are able to diffuse freely (�E = 0) across
consecutive vacancies while keeping at least one space from
each other and other kinks. So, the typical M state of these
sectors actually results in an alternating sequence of mobile
and jammed blocks. In these latter there can be just one
vacancy aside each kink pair, whereas single kinks may appear
separated by one or more spaces. However, note that in sector
(g) sequences of the form . . . 00100 . . . would be unstable

because there K1 < 0 (see first pairing process of Table I). On
par with what occurs in cases (a) and (b), this further constraint
(schematized in Table II) then reduces the proliferation of M

configurations with respect to sector (h). In fact, the recursions
of the Appendix show that for that latter sector the number of
M states grows as ∼1.8392L, while for (g) it grows just as
∼1.7437L.

With regard to the decay of these states, as in case (f) here
we limit ourselves to mention that in nearing low-temperature
regimes it turns out that the largest activation barrier is the
one that takes over (fourth paring process of Table I), as the
Arrhenius factors of these sectors actually will turn out to
diverge as e2Q (see Sec. IV C).

Finally, notice that in the region J1 < 0 with 0 � J2/J1 <

1/2 there are no M basins hindering the access to the AF
ground state, i.e., Eb ≡ 0. Here, the paths to this latter proceed
much as in sector (e) except that now J2 < 0, so the dynamics
can further decrease the energy either by triplet splittings
or pair creations (K1,P ,Q < 0). Therefore as temperature is
lowered in this region, the relaxation time towards the AF
ordering of finite chains remains bounded (see the beginning
of Sec. IV C).

IV. SCALING REGIMES

Having built up the kink evolution operator in a symmetric
representation [Eqs. (12), (17a), and (17b)], next we proceed
to evaluate numerically its spectral gap in finite chains via
a recursion type Lanczos algorithm [18]. As mentioned in
Sec. II we focus on the case of vanishing magnetization
in the original spin model, thus corresponding to a sub-
space of 1

2

(
L

L/2

)
kink states. As a preliminary test first we

verified that the transformed Boltzmann distribution |ψ0〉 ∝∑
σ exp(− β

2 Eσ ) |σ 〉 resulting from Eq. (13), actually yields the
“ground” state of our quantum “Hamiltonian” with eigenvalue
λ0 ≡ 0. Thereafter, as usual the Lanczos recursion was started
with a random linear combination of kink states, but here
chosen orthogonal to that Boltzmann-like direction. In turn, all
subsequent vectors generated by the Lanczos algorithm were
also reorthogonalized to |ψ0〉. This allowed us to obtain the
first excited eigenmodes of the evolution operator in periodic
chains of up to L = 24 sites, the main limitation for this being
the exponential growth of the space dimensionality.

Another restrictive issue we are confronted with is that as
temperature decreases the spectral gaps (λ1) get arbitrarily
small due to the energy barriers mentioned in Sec. III, i.e.,
λ1 = τ−1 ∝ e−βEb . On the other hand, to ensure that these
finite-size quantities are actually scaled within the Arrhenius
regime, in this context it is more appropriate to put forward a
“normalized” version of the scaling hypothesis (1), namely

�
∗
1(L) := lim

T →0+
eβEbλ1(L,T ) = AL−z, (18)

where the amplitude A would involve at most a J1,J2

dependent quantity (assuming L is large enough). Moreover,
like dynamic exponents such proportionality factors will also
come out as sector-wise universal constants. In practice, below
T/|J1| ∼ 0.2 the evaluation of (18) requires the use of at
least quadruple precision but as the spacing between low-lying
levels gets progressively narrow, for T/|J1| � 0.1 it turns out
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 0.052
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 0.06

 0.1  1

T/J1

Λ1
E   = 4 (J  + J  )b 1 2

FIG. 1. Normalized spectral gaps �1 ≡ eEb/T λ1 of the evolution
operator for L = 20 on approaching low-temperature regimes in
sectors (a) and (b) of Table II. From top to bottom, alternating
solid and dashed lines stand for coupling ratios r ≡ J2/J1 =
0.95, 0.9, 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1. Upper- and lowermost dot-
ted curves denoting respectively the cases r = 1 [sector (c)] and
r = 0, are shown for comparison. Details of that latter standard case
are displayed in Fig. 2(a).

that the pace of the Lanczos convergence becomes impractical
in most of the coupling sectors of Table II. Nevertheless, as we
shall see in the following subsections, already when tempera-
ture is lowered within the ranges in hand the normalized gaps

�1(L,T ) := e βEb λ1(L,T ) exhibit clear saturation trends, thus
constituting accurate estimations of �

∗
1(L).

A. J1, J2 > 0

Let us start by considering the first four cases of Table II,
all sharing at large times the decay pattern of the standard
dynamics of J2 = 0 [14], and the energy barriers Eb =
4 (J1 + J2) alluded to in the previous section. In Fig. 1 we
display the above normalized gaps for several coupling ratios
r = J2/J1 in sectors (a), (b), and (c) in a chain of 20 sites.
As temperature decreases, the saturated behavior of most of
the r values considered clearly signals the emergence of the
expected Arrhenius regime. Note that even a slight deviation
from the conjectured barriers would result in strong departures
from this behavior. Also, the saturation values of �1, i.e., the
amplitudes involved in Eq. (18), come out to be r independent
so long as r �= 0,1. Apart from finite-size corrections (Fig. 2),
this independence also holds for all other accessible lengths
(a general feature applying also to other sectors of Table II).
However, in approaching r = 0+ or 1−, where discontinuities
already appear at the level of transition rates (see Table I), the
Arrhenius trend is only incipient and in some limiting cases it
remains beyond our reach.

When it comes to dynamic exponents (z), in the main panels
of Fig. 2 we show the finite-size behavior of these normalized
gaps comparing the case of J2 = 0 with others in sectors (a)
and (b). Clearly, the data collapse onto larger sizes is better
for the standard dynamics, although in all cases the dynamic
exponents producing these scaling plots are close to z = 3
(check later on the extrapolations given in Sec. IV D). In
turn, their values were estimated from the slopes fitting the
finite-size decay of �1 at the saturation limit (insets of Fig. 2),
this being almost identical in (a) and (b) as it is evidenced
in Fig. 1.

 0.03

 0.032

 1

       T/J1

0.2

(b)
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Z

 0.03
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0.2

(c)

Λ1 LZ
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L

z ~ 3.3

Λ*
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    L
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FIG. 2. Finite-size scaling of normalized gaps e4 (K1+K2) λ1 for (a) r = 0 (usual ferromagnetic dynamics), (b) r = 0.3, and (c) r = 0.7.
Solid and dashed lines show alternately the cases of L = 12,14,16,18,20,22,24. In (a) sizes increase in upward order, while in (b) and (c) they
do so from top to bottom. The data collapse of larger sizes was attained using dynamic exponents read off from the slope of the insets. These
latter estimate the finite-size decay of spectral gaps close to T → 0+ [Eq. (18)]. In that limit, the decay of (b) (not shown) is indistinguishable
from that of (c) due to the common saturation trends of Fig. 1. For displaying convenience vertical scales of main panels were normalized by a
factor 24z.
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FIG. 3. Normalized gaps eEb/T λ1 for L = 20 within regime (d)
of Table II. From top to bottom solid and dashed lines refer in turn to
coupling ratios r = 1.5, 1.3, 1.2, 1.1, 1.05. For comparison, also the
case r = 1 [regime (c)] is shown by the dotted line. The inset estimates
the typical finite-size decay of these gaps in the low-temperature limit
[(Eq. (18)]. Filled triangles are representative of r > 1 in sector (d),
while open circles stand for r = 1. However, see extrapolations of
Sec. IV D.

The above observations can also be extended to Fig. 3,
where the normalized gaps of sectors (c) and (d) are exhibited.
In parallel with the difficulties occurring in Fig. 1 as r → 1−,
here these also appear in approaching the limit of r = 1+.
But otherwise, as before, the Arrhenius regime can be reached
already within our low-temperature ranges. In that respect, the
inset shows that the common finite-size decay of �

∗
1 in sector

(d) closely follows that of (c) (r = 1), both regimes being
characterized by a slope (dynamic exponent) very close to that
obtained for sectors (a) and (b). Thus, an asymptotic scaling
regime similar to the standard one of J2 = 0 might be expected
in these first four cases (despite the different proliferation rates
of their corresponding M states). But for the moment we defer
that discussion to Sec. IV D.

B. J1 < 0, J2 > 0

Next we turn to regime (e) where, as referred to in Sec. III,
the dynamics follows a rather different decay pattern into AF
states on time scales ∝ e4K2 . As temperature is lowered, the
saturation trends observed in Fig. 4(a) already disclose the
emergence of these Arrhenius factors for several r-coupling
ratios. As in the previous subsection, the agreement with
the former is very precise given the persistence of the �1

plateaus. Also, the amplitudes concerning Eq. (18) here turn
out to be r independent although, likewise with what occurs in
Fig. 1, as |r| decreases the Arrhenius regime barely shows up
for T/|J1| � 0.1. On the other hand, the trend of decreasing

minima approaching the standard nonmetastable gaps of J2 =
0 is disrupted in the low-temperature limit. As discussed below,
this already signals an abrupt crossover of scaling regimes.

Note that regardless of how small r might be, the metasta-
bility of this sector does not disappear so long as J2 > 0.
Thus, in the limit of r = 0− this poses a situation reminiscent
of that mentioned in Sec. I for 1D Glauber dynamics under
weak competing interactions. Irrespective of the weakness of
the frustration, in the limit of T → 0+ metastability takes over
and changes the dynamic exponents of that nonconserving
dynamics from diffusive (z = 2) to almost ballistic (z ∼ 1)
[11]. In that regard, here the analogy goes deeper as a
similar discontinuity in scaling regimes also appears in this
(nonfrustrated) sector. This is exemplified for r = −0.5 in the
scaling plot of Fig. 4(b) where the data collapse towards larger
sizes is attained on choosing a dynamic exponent z ∼ 1.4, in
turn read off from the slope of the inset. As in Sec. IV A, this
latter depicts the finite-size behavior of normalized gaps within
the common saturation regime of Fig. 4(a), thus showing a �

∗
1

decay which presumably is also representative of all r ∈ (e).
Let us anticipate that the dynamic exponent arising from the
finite-size extrapolations of these data (see Sec. IV D) also
tends to a nearly ballistic value, far apart from the standard
diffusive case of J1 < 0 (z ∼ 2; see Fig. 5 below) as well as
from the subdiffusive one with J1 > 0 [z ∼ 3.1, Fig. 2(a)].

C. J1, J2 < 0

Before moving on to other sectors of Table II, first we
consider the nonmetastable regime mentioned by the end of
Sec. III, namely the situation of J1 < 0 with 0 � r < 1/2. As
in sector (e), here the phase ordering is still AF. In Fig. 5(a) we
display the plain spectral gaps for several coupling ratios in this
region [no need of normalization as in Eq. (18)]. Contrariwise
to all other sectors, in this case the relaxation times (1/λ1) of
finite chains are kept bounded in the low-temperature limit, and
so the Lanczos convergence is now faster. Unlike the Glauber
case briefly touched upon in Sec. IV B, here the presence of
frustration does not bring about changes in scaling regimes.
Taking for instance r = 0.3, this is checked in Fig. 5(b) where
at low temperatures all finite-size data can be made to collapse
into a single curve by choosing the same diffusive exponent of
the standard AF dynamics. In turn, the inset also corroborates
this by estimating the slope with which these gaps decay with
the system size as T → 0. Since in that limit λ1 becomes
r independent (just as do the amplitudes accompanying the
Arrhenius factors in the above subsections), clearly this scaling
behavior persists through the entire nonmetastable region.

Turning to sectors (f) and (g), there are various thermal
barriers affecting the decay of their respective M structures,
namely (in increasing order) 2Q, − 4K2 for r ∈ (f), and
2P, − 4K2, 2Q for r ∈ (g). Among these barriers, it turns out
that actually the largest one of each sector is comprised in the
normalized gaps exhibited in Fig. 6. As before, the precision
of the corresponding Arrhenius factors is reflected in the clear
saturation behavior obtained in the low-temperature regime.
However just as in Sec. IV A, in approaching r = 1−, 1+,
or 1/2+ [where the trend of increasing maxima continues for
heights larger than the range of Fig. 6(a)], the discontinuities
arising in transition rates carry that saturation limit beyond our

042120-8



METASTABLE AND SCALING REGIMES OF ONE- . . . PHYSICAL REVIEW E 93, 042120 (2016)

 0.1

 0.4

 0.7

 0.1  1
-T/J 1

Λ1
(a)

E   = 4 Jb 2
 0.3

 0.5

 0.1  1
-T/J       1

Λ1 L
Z

(b)

 1

 8  12  18  24

     L

2 z ~ 1.4

Λ*
1

FIG. 4. (a) Normalized gaps eEb/T λ1 in regime (e) of Table II using L = 20. From left to right solid and dashed lines denote in turn the
cases of −r = 0.1, 0.2, 0.3, 0.5, 0.8,1.5. Cusps stem from level crossings in the spectrum of the evolution operator. The dotted line shows for
comparison the standard case of r = 0 with J1 < 0. (b) Finite-size scaling of normalized gaps for r = −0.5 upon identifying z with the slope
of the inset. Alternating solid and dashed lines in downward direction indicate sizes L = 12,14,16,18,20,22,24. For displaying purposes the
vertical scale was normalized by a factor 24z. The inset estimates the typical finite-size decay of these gaps within sector (e) in the limit of
T → 0+. See however extrapolations of Sec. IV D.
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FIG. 5. (a) First excitation level of the evolution operator for J1, J2 < 0 and L = 20 in the nonmetastable region 0 � r < 1/2. From left
to right solid and dashed lines refer alternately to coupling ratios r = 0.45, 0.4, 0.3, 0.2, 0.1. The case r = 0 is also shown for comparison
(dotted line). (b) Scaling plot of these levels for r = 0.3 and L = 24,22,20,18,16,14,12 (solid and dashed lines from top to bottom) using
z = 2. For convenience the vertical scale was normalized by a factor 242. The slope of the inset corroborates a common diffusive decay in the
low-temperature limit of all ratios considered in panel (a).
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FIG. 6. Normalized gaps eEb/T λ1 for L = 20 in sectors (f) and (g) of Table II [panels (a) and (b) respectively, exhibiting results of
several coupling ratios]. From top to bottom solid and dashed lines stand in turn for (a), r = 0.7, 0.712, 0.725, 0.75, 0.8, 0.9, 0.95, 1, and (b),
r = 1.5, 1.4, 1.3, 1.2. The inset shows the case of r = 1 for which these gaps become size-independent in nearing the Arrhenius regime. Here,
lengths L = 24,20,16,12,8 (in upward direction) match the fourfold periodicity of the ground state alluded to in the text.

reach. But surprisingly, as is shown by the inset of Fig. 6(b), for
r = 1 that limit becomes size independent. This suggests an
exponentially fast relaxation even in the thermodynamic limit,
though as T → 0+ the time scales involved get arbitrarily
large, i.e., τ � 1

2e−4K2 .
In considering the finite-size behavior of �

∗
1(L) for other

coupling ratios in sectors (f) and (g), note that there the fourfold
periodicity of the ground state · · · • • ◦ ◦ · · · mentioned by
the beginning of Sec. II leaves us with few sizes to draw
conclusions about dynamic exponents. However, it is worth
mentioning that the rather small logarithmic slopes resulting
from the gaps of L = 16, 20, and 24 (namely, 0.18 and
0.16), are consistent with the size-independent gaps obtained
for r = 1.

Sector (h). As before, there are several thermal barriers
affecting the M states of this sector (−4K2,4K1,2P,2Q),
though now the largest one (2Q) ends up imposing even more
severe restrictions on the Lanczos procedure as temperature is
lowered. In fact, for L > 16 the relenting convergence pace
precluded us to obtain further results within the Arrhenius
regime. In part, this also stems from level crossings in
the spectrum of the evolution operator, on the other hand
responsible for the pointed cusps observed in Fig. 7. There,
we are just content with evidencing the presence of a common
activation factor characterizing the decay towards either the
ferromagnetic or fourfold ground state (−1/2 < r < 0, or
r < −1/2 respectively).

D. Extrapolations

Armed with the finite-size estimations of the normalized
gaps evaluated in Secs. IV A and IV B, next we turn to the issue

of going a step further than the scaling plots considered so far.
In that respect, an improved estimation of dynamic exponents
can be made by introducing the sequence of approximants or
effective exponents

ZL = ln[�
∗
1(L)/�

∗
1(L − 2)]

ln[(L − 2)/L]
, (19)

each of which simply derives a measure of z from the gaps of
successive chain lengths. Similarly, it is worth introducing
a sequence of approximants to the amplitudes involved in
Eq. (18), as their common saturation values strongly suggest
that these quantities are robust within each coupling sector
of Table II. Thus, concurrently with Eq. (19) we shall also
consider the accompanying set of effective amplitudes AL

given by

ln AL = ln �
∗
1(L) ln(L − 2) − ln �

∗
1(L − 2) ln(L)

ln[(L − 2)/L]
. (20)

In general, the elements xL of a finite-size sequence
obtained close to a critical point (here T = 0+), are assumed
to converge logarithmically [17,19] as xL = x + ∑

j αjL
−aj ,

with α constants and a exponents such that 0 < aj <

aj+1, ∀ j . To minimize the number of fitting parameters
here we keep only the leading-order term of that expansion
which just leaves us with a nonlinear least-squares fit of
three quantities. The results of those regressions are depicted
in Fig. 8 which summarizes the trends of sequences (19)
and (20) across sectors (a)–(e), together with those found in the
nonmetastable region. Specifically, the extrapolated exponents
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FIG. 7. Normalized gaps eEb/T λ1 in regime (h) of Table II, using
L = 16 for −r = 0.1, 0.2, 0.3, 0.4, 0.55, 1.5 (solid and dashed lines
from left to right).

and amplitudes of each case turn out to be

z, ln A �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3.09(5), 6.3(1), for J1,J2 ∈ (a) or (b),

3.13(3), 6.2(1), for J1,J2 ∈ (c) or (d),

1.11(3), 2.74(9), for J1,J2 ∈ (e),

1.996(2), 3.67(1), for 0 � r < 1/2, J1 < 0.

(21)

The pace of convergence of effective exponents in sectors
(a) and (b) comes out slightly slower than that arising
in (c) and (d) (a ∼ 1.97 and 2.07 respectively), though
in the case of effective amplitudes that pace is inverted
(a ∼ 1.76 and 1.58). In sector (e) the convergence is still
a bit slower [a ∼ 1.75 in Fig. 8(a) and ∼1.4 in Fig. 8(b)],
but as anticipated in Sec. IV B the extrapolated dynamic
exponent is close to that resulting from the 1D Glauber
dynamics under weak competing interactions [11]. Thus, both
scenarios are characterized by a discontinuous crossover from
a nonmetastable diffusive regime to a metastable one with
nearly ballistic exponents. In the former case (Eb = 0) the
convergence is somewhat faster (a ∼ 2.2 for exponents, and
∼1.97 for amplitudes) and the estimated errors become smaller
than 0.3%. By contrast, in sectors (a)–(d) the errors are such
that the resulting confidence intervals superpose each other
[see Eq. (21)], though this is also due to the slight differences
between the extrapolated values obtained in those sectors.
Since in practice it is never really clear whether the assumed
asymptotic behavior is sufficiently well realized by the data
available [17], those differences might well be ascribed to our

finite-size limitations. In that sense, the merging of confidence
intervals [rightmost center of panels 8(a) and 8(b)] suggests a
common characterization of these four sectors (as anticipated
by the end of Sec. IV A), within an error margin of less than
∼5%. On this particular, it is also worth pointing out that for the
standard ferromagnetic case of J2 = 0 the differences between
our higher approximants, namely Z24 − Z22 and ln(A24/A22),
are both less than 0.02% [also see Fig. 2(a)]. The corresponding
sequences approach swiftly towards z � 3.11 (thus sug-
gesting a slightly slower kinetics than the Lifschitz-Slyozov
type [25]), and ln A � 6.25, both values being consistent
with Eq. (21) and included within the merged intervals
of Fig. 8.

Finally, we should add that the seemingly fast convergence
of approximants (19) and (20) in Fig. 8 only occurs within a
small region of our scaled sizes (1/La , a > 1). This is due to
the big α slopes stemming from our nonlinear least-squares
fits, so that the measure of successive errors is actually α/La .
Nonetheless, the larger extrapolated errors of Eq. (21) resulted
in less than 4%.

V. CONCLUDING REMARKS

To summarize, we have studied 1D Kawasaki dynamics
considering up to second neighbor interactions thus uncover-
ing a range of metastable situations [sectors (a)–(h) specified
in Table II]. Following the thread of arguments given in the
Glauber counterpart [11], we have constructed a quantum spin
analogy whose “Hamiltonian” [Eqs. (12), (17a), and (17b)]
played the role of the evolution operator of these processes in
the kink representation (see Table I). The relaxation times
of these former were then evaluated numerically in finite
chains by analyzing the spectral gaps associated with those
Hamiltonians using standard recursive methods [18]. We
focused attention on the low- but nonzero-temperature regimes
where magnetic domains tend to coarsen and relaxation times
can grow arbitrarily large—even for finite chains—due to the
activation barriers discussed through Secs. III and IV. The
usual finite-size scaling hypothesis (1) was then normalized
as in Eq. (18) so as to actually scale the spectral gaps of each
sector within their corresponding Arrhenius regimes.

At time scales of order e 4 (K1+K2) the decay patterns of
sectors (a)–(d) were argued to be those of the standard ferro-
magnetic case [14], although the proliferation of metastable
states in sectors (b) and (c) turns out to be smaller. However,
those differences appear to have no effect on the dynamic
exponents, at least within the confidence intervals estimated
in the extrapolations of Sec. IV D [Eq. (21) and Fig. 8(a)]. By
contrast, those extrapolations yielded nearly ballistic values
for the exponents of sector (e), on the other hand conjectured
to decay through times ∝ e 4K2 in a rather different form.
Note here then the abrupt crossover of scaling regimes in
passing from sector (d)–(e). Also, in moving from this latter
to the nonmetastable region 0 � J2/J1 < 1/2 with J1 < 0,
another discontinuous change of dynamic exponents occurs.
In the absence of activation barriers now these former become
diffusive [Figs. 5(b) and 8(a)] while the relaxation time of
finite systems remains bounded even at T = 0. This situation
is highly reminiscent of that of the Glauber dynamics studied
in Ref. [11] where the sudden emergence of metastable states
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ALBARRACÍN, ROSALES, AND GRYNBERG PHYSICAL REVIEW E 93, 042120 (2016)

 3

 5

 7

 0  0.015  0.03

 L
-a

ln AL

E  = 0b J  < 0,   J   > 01 2

J  , J   >  01 2

(b)

 1

 2

 3

 0  0.005  0.01

L
-a

ZL

E  = 0b

J  < 0,   J   > 01 2

J  , J   >  01 2

(a)

FIG. 8. Extrapolations of effective dynamic exponents (a), and amplitudes (b) defined in Eqs. (19) and (20). Data of regimes (a) and
(b) (listed in Table II) are represented by circles, regimes (c) and (d) by triangles, and regime (e) by rhomboids. Rightmost horizontal lines
depict the confidence intervals arising from nonlinear fittings in those regimes (see text for details). Leftmost dashed lines indicate the limiting
values of the rapidly converging approximants for the usual case of J2 = 0, J1 > 0. Small dots stand for results in the nonmetastable sector
0 � r < 1/2 with J1 < 0.

under a small J2 < 0 also changes these exponents from
diffusive to nearly ballistic.

When it comes to sectors (f) and (g) the fourfold periodicity
of the ground state mentioned in Sec. II left us with few
sizes to consider in Eq. (18), thus restricting our ability to
extrapolate dynamic exponents. However for J1 = J2 < 0,
just where the activation barriers of these sectors coincide
(see Table II), surprisingly the normalized gaps become
independent of the system size in the Arrhenius regime
[inset of Fig. 6(b)]. Clearly, this suggests an exponential
relaxation to equilibrium through time scales ∝ e−4K2 that
would persist up to the thermodynamic limit. In turn, this
would be consistent with the small exponents preliminarily
obtained for other coupling ratios in these sectors, but that is
an issue requiring further investigation. Similarly, the study
of sector (h) remains quite open given the convergence
difficulties encountered in larger chains as temperature is
decreased. Nonetheless, all sectors indicate that the amplitudes
involved in Eq. (18) possibly stand for piecewise-universal
quantities. Except at J2/J1 = 0,1/2,1, where the original
transition rates get discontinuous in the limit of T → 0+, this
is evidenced by the common saturation values of normalized
gaps observed throughout Figs. 1, 3, 4(a), 5(a), 6(a), 6(b),
and 7. As with dynamic exponents, those values were
extrapolated to their thermodynamic limit in sectors (a)–
(e) as well as in the nonmetastable region [Eq. (21) and
Fig. 8(b)].

In common with a variety of finite-size scaling studies (see,
e.g., Ref. [17] and references therein), ultimately small sized
systems have been analyzed. Often, as is the case here, the
dimensionality of the operators involved (transfer matrices,

Liouvillians, quantum Hamiltonians) grows exponentially
with the system size thus severely limiting the manageable
length scales, even for optimized algorithms. In an attempt
to avoid those limitations we also considered the scaling of
relaxation times in larger chains via Monte Carlo simulations.
However, due to the Arrhenius barriers the difficulties intro-
duced by small temperatures in such simulations are by far
more restrictive than those associated to the system size (recall
that τ ∝ eEb/T Lz). In fact, starting from a disordered phase and
quenching down to T/|J1| within the range 0.1–0.2, it turned
out that a significant fraction of the evolutions considered gets
stuck in the typical metastable states of Table II, even at large
times.

Finally, and with regard to a possible extension of this
study, it would be interesting to derive the activation barriers
Eb quoted in that latter table directly from the evolution
operator H constructed in Sec. II A. However irrespective
of the sector considered, note that for T → 0+ the leading
order of its diagonal terms [Eq. (12)] is different from that
of their nondiagonal counterparts [Eqs. (17a) and (17b)].
Thereby, the identification of an overall Arrhenius factor
in the low-temperature limit of H is not evident in the
kink representation. But in view of the universal amplitudes
obtained above, one can further ask whether there might be
a uniform spin rotation R around a sector dependent axis
such that lim

T →0+
RHR−1 = e−βEb Ĉ, for some sector-wise but

constant operator Ĉ. That would not only single out activation
barriers but would also allow computational access to the strict
limit of T → 0+ via the low-lying eigenvalues of Ĉ. Further
work along that line is under consideration.
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APPENDIX: PROLIFERATION OF METASTABLE STATES

As schematized in Table II, these metastable (M) structures
are characterized by the restrictions imposed on the number of
consecutive kinks (k) and vacancies (v) scattered throughout
the chain. In turn, for each coupling sector these constraints
affect the rate at which these configurations proliferate with
the system size. In order to evaluate such specific rates, in what
follows we will construct a set of recursive relations for the
number ML of those states on chains of generic length L. To
ease the analysis, open boundary conditions (OBCs) will be
assumed throughout. Below, we address each case in turn:

(a). Since for this sector k = 1 and v � 1, it is helpful
to consider the relation between the quantities FL(1) and
FL(0) defined as the number of M configurations of length
L having respectively 1 or 0 as kink occupations on their first
site. Clearly, under OBCs these latter quantities must then be
recursively related as

FL(1) = FL−1(0), FL(0) = FL−1(0) + FL−1(1). (A1)

Therefore, either of these quantities as well as the total number
ML = FL(0) + FL(1) of M states follow a Fibonacci recursion
ML+2 = ML+1 + ML, from which an exponential growth
ML ∝ gL with golden mean g = (1 + √

5)/2 is obtained for
large sizes (this growth also coincides with that of the ground
state degeneracy at −J2/|J1| = 1

2 [26]).
(b). In addition to the kink restrictions of the previous

case, here there is also a ban on sequence parts of the form
. . . 10101 . . . as indicated in Table II. To take into account that
further constraint it is now convenient to introduce the number
GL(n1,n2) of M sequences of length L having n1 and n2 as
their first and second characters respectively (n1,n2 = 0 or 1).
Under OBCs it is then a simple matter to check that these
quantities must be related as

GL(0,0) = GL−1(0,0) + GL−2(1,0), (A2a)

GL(0,1) = GL−1(1,0) − GL−2(0,1), (A2b)

GL(1,0) = GL−1(0,0) + GL−1(0,1), (A2c)

while clearly GL(1,1) ≡ 0. In Eq. (A2b), GL−2(0,1)
cancels out just all extra sequences from GL−1(0,1) which
would not form part of GL(0,1). Thereby, it can be readily
verified that all G’s, along with the total number of M states,
i.e., ML = ∑

n1,n2
GL(n1,n2), will then follow the recurrence

ML+5 = ML+4 + ML+2 + ML. (A3)

The general solution of this latter [27] is associated to the
roots of the polynomial x5 − x4 − x2 − 1, thus for long chains,
where the largest root dominates, the M configurations of this
sector finally turn out to grow as ∼1.5701L.

(c). Further to k = 1, in this coupling sector every kink
must appear separated by at least two vacancies, i.e., v � 2, so
now there are even more reductions in the number of M states.
On considering for instance the FL(0) and FL(1) quantities
referred to in case (a), it is clear that under OBCs here these
should verify

FL(0) = FL−1(0) + FL−2(1), FL(1) = FL−1(0), (A4)

from where the total number of M configurations is obtained
recursively as

ML+3 = ML+2 + ML. (A5)

Thus, for L � 1 the largest root of the associated polynomial
x3 − x2 − 1 implies that ML ∝ 1.4655L.

(d). In this case not only v � 2 and k = 1, but also there
may be consecutive kinks now appearing in groups of k > 3.
To evaluate the proliferation of the corresponding M states
it is convenient to reintroduce here the GL(n1,n2) quantities
referred to in case (b). For these latter, we readily obtain the
recursive relations

GL(0,0) = GL−1(0,0) + GL−2(1,0) + GL−2(1,1),

GL(1,0) = GL−1(0,0), (A6)

GL(1,1) = GL−1(1,1) + GL−3(1,0)

(OBCs throughout), evidently now with GL(0,1) ≡ 0 as there
can be no isolated vacancies. Thus, after a small amount of
algebra it turns out that the total number of M configurations
as well as all G′s satisfy the recursive form

ML+6 = 2 ML+5 − ML+4 + ML+3 − ML+2 + ML, (A7)

from where the golden mean is recovered in the largest root
of the associated polynomial x6 − 2x5 + x4 − x3 + x2 − 1.
Hence, analogously to sector (a), in the thermodynamic limit
ML proliferates as gL.

(e). As it was referred to in Table II for this coupling
regime k � 3 and v � 2. Thus, resorting back to the GL(n1,n2)
quantities considered above we readily find that in this sector
these must be related as

GL(0,0) = GL−1(0,0) + GL−2(1,1),

GL(1,1) = GL−1(1,1) + GL−3(0,0), (A8)

whereas GL(0,1) = GL(1,0) = 0, as neither vacancies nor
kinks may appear isolated in this case (OBCs assumed).
Thereby, it can be checked that the total number of M states is
given recursively by

ML+5 = 2 ML+4 − ML+3 + ML. (A9)

From the largest root of the polynomial x5 − 2x4 + x3 − 1
linked to this recurrence, it then follows that for large sizes
ML finally grows as ∼1.5289L.

(f). In this sector kinks and vacancy constraints are
respectively specified by k = 1,2, and v = 1. Therefore, in
terms of the G quantities introduced above this means that
their recursion relations should now read

GL(0,1) = GL−1(1,0) + GL−1(1,1),

GL(1,0) = GL−1(0,1), (A10)

GL(1,1) = GL−1(1,0),
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while clearly GL(0,0) ≡ 0. Hence, after simple substitutions
it is found that each of these G’s, and correspondingly the total
number of M states, all follow the recursive form

ML+3 = ML+1 + ML, (A11)

which for large sizes is taken over by the largest root of
the polynomial x3 − x − 1. Thereby, it turns out that for this
coupling regime ML grows only as fast as ∼1.3247L.

(g). Following Table II, in this coupling regime k = 1,2
(as before), but now v � 1. In addition, there is also the
constraint impeding the appearance of sequence parts of the
form . . . 00100 . . . Hence, assuming as usual OBCs, the four
G quantities of this case must be linked recursively as

GL(0,0) = GL−1(0,0) + GL−1(0,1) − GL−3(0,0), (A12a)

GL(0,1) = GL−1(1,0) + GL−1(1,1), (A12b)

GL(1,0) = GL−1(0,0) + GL−1(0,1), (A12c)

GL(1,1) = GL−1(1,0). (A12d)

Due to the above restriction, and on par with case (b), here
GL−3(0,0) appears subtracting unwanted sequences which

otherwise would overestimate GL(0,0) in Eq. (A12a). It is then
a straightforward matter to verify that all of the above G’s (and
therefore also ML), ought to comply with the relation

ML+6 = ML+5 + ML+4 + ML+1 + ML. (A13)

So, the characteristic polynomial associated to this latter
recurrence is x6 − x5 − x4 − x − 1, from where it follows that
at large sizes ML should proliferate as ∼1.7437L.

(h). Finally, in this sector kinks and vacancy restrictions
remain as in the previous case except that the ban on the se-
quences referred to above is now lifted. Thus, recursions (A12)
still hold provided Eq. (A12a) is modified as

GL(0,0) = GL−1(0,0) + GL−1(0,1), (A14)

i.e., the cancellation of sequences contained in GL−3(0,0) is no
longer required here. After that modification it can be readily
checked that the recursions arising in this coupling regime are
all of the form

ML+3 = ML+2 + ML+1 + ML. (A15)

From the largest root of x3 − x2 − x − 1, we thus find that in
the limit of large L here ML grows as ∼1.8392L.

[1] For reviews, consult Kinetics of Phase Transitions, edited by S.
Puri and V. Wadhawan (CRC Press, Boca Raton, FL, 2009); A. J.
Bray, Adv. Phys. 43, 357 (1994); J. D. Gunton, M. San Miguel,
and P. S. Sahni, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press, London,
1983), Vol. 8.

[2] S. Dattagupta and S. Puri, Dissipative Phenomena in Condensed
Matter: Some Applications (Springer, Berlin, 2004); A. Onuki,
Phase Transition Dynamics (Cambridge University Press,
Cambridge, UK, 2002).

[3] K. Kawasaki, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M. S. Green (Academic Press, London,
1972), Vol. 2.

[4] R. J. Glauber, J. Math. Phys. 4, 294 (1963); B. U. Felderhof,
Rep. Math. Phys. 1, 215 (1971).

[5] K. Kawasaki, Phys. Rev. 145, 224 (1966).
[6] At a coarse grained or hydrodynamic level of description both

dynamics pertain to the classification scheme of P. C. Hohenberg
and B. Halperin, Rev. Mod. Phys. 49, 435 (1977).

[7] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View
of Statistical Physics (Cambridge University Press, Cambridge,
UK, 2010), Chap. 8.

[8] Nonequilibrium Statistical Mechanics in One Dimension, edited
by V. Privman (Cambridge University Press, Cambridge, UK,
1997).

[9] L. Bogani, C. Sangregorio, R. Sessoli, and D. Gatteschi,
Angew. Chem., Int. Ed. Engl. 44, 5817 (2005); K. Bernot,
L. Bogani, A. Caneschi, D. Gatteschi, and R. Sessoli, J. Am.
Chem. Soc. 128, 7947 (2006); A. Caneschi, D. Gatteschi, N.
Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A.
Rettori, M. G. Pini, and M. A. Novak, Europhys. Lett. 58, 771
(2002).

[10] M. G. Pini and A. Rettori, Phys. Rev. B 76, 064407 (2007).

[11] M. D. Grynberg, Phys. Rev. E 91, 032129 (2015).
[12] S. Redner and P. L. Krapivsky, J. Phys. A 31, 9229 (1998).
[13] S. J. Cornell, K. Kaski, and R. B. Stinchcombe, Phys. Rev. B 44,

12263 (1991); see also S. J. Cornell in Ref. [8] and references
therein.

[14] For details, consult Sec. 8.7 of Ref. [7].
[15] N. G. van Kampen, Stochastic Processes in Physics and Chem-

istry, 3rd ed. (North-Holland, Amsterdam, 2007), Chap. 5.
[16] See, e.g., K. Tanaka, T. Morita, and K. Hiroike, Prog.

Theor. Phys. 77, 68 (1987); R. M. Hornreich, R. Liebmann,
H. G. Schuster, and W. Selke, Z. Phys. B 35, 91 (1979); J.
Stephenson, Phys. Rev. B 1, 4405 (1970); J. Marro and R.
Dickman, Nonequilibirum Phase Transitions in Lattice Models
(Cambridge University Press, Cambridge, UK, 1999), Sec. 8.4.

[17] Consult for instance, M. Henkel, H. Hinrichsen, and
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