4,150 research outputs found
Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations
The evolution of planetary systems is intimately linked to the evolution of
their host star. Our understanding of the whole planetary evolution process is
based on the large planet diversity observed so far. To date, only few tens of
planets have been discovered orbiting stars ascending the Red Giant Branch.
Although several theories have been proposed, the question of how planets die
remains open due to the small number statistics. In this work we study the
giant star Kepler-91 (KOI-2133) in order to determine the nature of a
transiting companion. This system was detected by the Kepler Space Telescope.
However, its planetary confirmation is needed. We confirm the planetary nature
of the object transiting the star Kepler-91 by deriving a mass of and a planetary radius of
. Asteroseismic analysis produces a
stellar radius of and a mass of
. We find that its eccentric orbit
() is just away
from the stellar atmosphere at the pericenter. Kepler-91b could be the previous
stage of the planet engulfment, recently detected for BD+48 740. Our
estimations show that Kepler-91b will be swallowed by its host star in less
than 55 Myr. Among the confirmed planets around giant stars, this is the
planetary-mass body closest to its host star. At pericenter passage, the star
subtends an angle of , covering around 10% of the sky as seen from
the planet. The planetary atmosphere seems to be inflated probably due to the
high stellar irradiation.Comment: 21 pages, 8 tables and 11 figure
Temporal variability and statistics of the Strehl ratio in adaptive-optics images
We have investigated the temporal variability and statistics of the
"instantaneous" Strehl ratio. The observations were carried out with the 3.63-m
AEOS telescope equipped with a high-order adaptive optics system. In this paper
Strehl ratio is defined as the peak intensity of a single short exposure. We
have also studied the behaviour of the phase variance computed on the
reconstructed wavefronts. We tested the Marechal approximation and used it to
explain the observed negative skewness of the Strehl ratio distribution. The
estimate of the phase variance is shown to fit a three-parameter Gamma
distribution model. We show that simple scaling of the reconstructed wavefronts
has a large impact on the shape of the Strehl ratio distribution.Comment: submitted to PAS
State and dynamical parameter estimation for open quantum systems
Following the evolution of an open quantum system requires full knowledge of
its dynamics. In this paper we consider open quantum systems for which the
Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system
similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]:
a radiatively damped atom driven by an unknown Rabi frequency (as
would occur for an atom at an unknown point in a standing light wave). By
measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these
two sorts of knowledge acquisition (quantified by the posterior distribution
for , and the conditional purity of the system, respectively) are quite
distinct processes, which are not strongly correlated. Also, the quality and
quantity of knowledge gain depend strongly on the type of monitoring scheme. We
compare five different detection schemes (direct, adaptive, homodyne of the
quadrature, homodyne of the quadrature, and heterodyne) using four
different measures of the knowledge gain (Shannon information about ,
variance in , long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
Recommended from our members
Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients.
BackgroundWe previously reported the results of a multicentric prospective randomized trial of chemo-refractory metastatic breast cancer patients testing the efficacy of two doses of TGFβ blockade during radiotherapy. Despite a lack of objective responses to the combination, patients who received a higher dose of TGFβ blocking antibody fresolimumab had a better overall survival when compared to those assigned to lower dose (hazard ratio of 2.73, p = 0.039). They also demonstrated an improved peripheral blood mononuclear cell (PBMC) counts and increase in the CD8 central memory pool. We performed additional analysis on residual PBMC using single cell network profiling (SCNP).MethodsThe original trial randomized metastatic breast cancer patients to either 1 or 10 mg/kg of fresolimumab, every 3 weeks for 5 cycles, combined with radiotherapy to a metastatic site at week 1 and 7 (22.5 Gy given in 3 doses of 7.5 Gy). Trial immune monitoring results were previously reported. In 15 patients with available residual blood samples, additional functional studies were performed, and compared with data obtained in parallel from seven healthy female donors (HD): SCNP was applied to analyze T cell receptor (TCR) modulated signaling via CD3 and CD28 crosslinking and measurement of evoked phosphorylation of AKT and ERK in CD4 and CD8 T cell subsets defined by PD-1 expression.ResultsAt baseline, a significantly higher level of expression (p < 0.05) of PD-L1 was identified in patient monocytes compared to HD. TCR modulation revealed dysfunction of circulating T-cells in patient baseline samples as compared to HD, and this was more pronounced in PD-1+ cells. Treatment with radiotherapy and fresolimumab did not resolve this dyfunctional signaling. However, in vitro PD-1 blockade enhanced TCR signaling in patient PD-1+ T cells and not in PD-1- T cells or in PD-1+ T cells from HD.ConclusionsFunctional T cell analysis suggests that baseline T cell functionality is hampered in metastatic breast cancer patients, at least in part mediated by the PD-1 signaling pathway. These preliminary data support the rationale for investigating the possible beneficial effects of adding PD-1 blockade to improve responses to TGFβ blockade and radiotherapy.Trial registrationNCT01401062
Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory
Context. Debris discs are thought to be formed through the collisional
grinding of planetesimals, and can be considered as the outcome of planet
formation. Understanding the properties of gas and dust in debris discs can
help us to comprehend the architecture of extrasolar planetary systems.
Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have
provided a valuable dataset for the study of debris discs gas and dust
composition. This paper is part of a series of papers devoted to the study of
Herschel PACS observations of young stellar associations.
Aims. This work aims at studying the properties of discs in the Beta Pictoris
Moving Group (BPMG) through far-IR PACS observations of dust and gas.
Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100
and 160 microns of 19 BPMG members, together with spectroscopic observations of
four of them. Spectroscopic observations were centred at 63.18 microns and 157
microns, aiming to detect [OI] and [CII] emission. We incorporated the new
far-IR observations in the SED of BPMG members and fitted modified blackbody
models to better characterise the dust content.
Results. We have detected far-IR excess emission toward nine BPMG members,
including the first detection of an IR excess toward HD 29391.The star HD
172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding
the short list of debris discs with a gas detection. No debris disc in BPMG is
detected in both [OI] and [CII]. The discs show dust temperatures in the range
55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii
from blackbody models in the range 3 to 82 AU. All the objects with a gas
detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table
Stochastic simulations of conditional states of partially observed systems, quantum and classical
In a partially observed quantum or classical system the information that we
cannot access results in our description of the system becoming mixed even if
we have perfect initial knowledge. That is, if the system is quantum the
conditional state will be given by a state matrix and if classical
the conditional state will be given by a probability distribution
where is the result of the measurement. Thus to determine the evolution of
this conditional state under continuous-in-time monitoring requires an
expensive numerical calculation. In this paper we demonstrating a numerical
technique based on linear measurement theory that allows us to determine the
conditional state using only pure states. That is, our technique reduces the
problem size by a factor of , the number of basis states for the system.
Furthermore we show that our method can be applied to joint classical and
quantum systems as arises in modeling realistic measurement.Comment: 16 pages, 11 figure
The Distribution of Redshifts in New Samples of Quasi-stellar Objects
Two new samples of QSOs have been constructed from recent surveys to test the
hypothesis that the redshift distribution of bright QSOs is periodic in
. The first of these comprises 57 different redshifts among all
known close pairs or multiple QSOs, with image separations 10\arcsec,
and the second consists of 39 QSOs selected through their X-ray emission and
their proximity to bright comparatively nearby active galaxies. The redshift
distributions of the samples are found to exhibit distinct peaks with a
periodic separation of in identical to that claimed
in earlier samples but now extended out to higher redshift peaks and 4.47, predicted by the formula but never seen before. The periodicity
is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is
present in these three datasets at an overall significance level -
, and appears not to be explicable by spectroscopic or similar
selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure
Quantum trajectories for the realistic measurement of a solid-state charge qubit
We present a new model for the continuous measurement of a coupled quantum
dot charge qubit. We model the effects of a realistic measurement, namely
adding noise to, and filtering, the current through the detector. This is
achieved by embedding the detector in an equivalent circuit for measurement.
Our aim is to describe the evolution of the qubit state conditioned on the
macroscopic output of the external circuit. We achieve this by generalizing a
recently developed quantum trajectory theory for realistic photodetectors [P.
Warszawski, H. M. Wiseman and H. Mabuchi, Phys. Rev. A_65_ 023802 (2002)] to
treat solid-state detectors. This yields stochastic equations whose (numerical)
solutions are the ``realistic quantum trajectories'' of the conditioned qubit
state. We derive our general theory in the context of a low transparency
quantum point contact. Areas of application for our theory and its relation to
previous work are discussed.Comment: 7 pages, 2 figures. Shorter, significantly modified, updated versio
- …