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In a partially observed quantum or classical system the information that we cannot access results
in our description of the system becoming mixed, even if we have perfect initial knowledge. That is,
if the system is quantum the conditional state will be given by a state matrix ρr(t), and if classical,
the conditional state will be given by a probability distribution Pr(x, t), where r is the result of the
measurement. Thus to determine the evolution of this conditional state, under continuous-in-time
monitoring, requires a numerically expensive calculation. In this paper we demonstrate a numerical
technique based on linear measurement theory that allows us to determine the conditional state
using only pure states. That is, our technique reduces the problem size by a factor of N , the
number of basis states for the system. Furthermore we show that our method can be applied to
joint classical and quantum systems such as arise in modeling realistic (finite bandwidth, noisy)
measurement.

PACS numbers: 03.65.Yz, 42.50.Lc, 03.65.Ta

I. INTRODUCTION

To obtain information about a system, a measurement
has to be made. Based on the results of this measurement
we assign to the system our state of knowledge. For a
classical system this state takes the form of a probability
distribution P (x′, t), while for a quantum system we have
a state matrix ρ(t). [30] In this paper we are concerned
with efficient simulation techniques for partly observed
systems; that is, systems for which the observer cannot
obtain enough information to assign the system a pure
state, P (x′, t) = δ[x′ − x(t)] or ρ(t) = |ψ(t)〉〈ψ(t)|.

The chief motivation for wishing to know the condi-
tional state of a system is for the purpose of feedback
control [1, 2, 3, 4]. That is because for cost functions
that are additive in time, the optimal basis for control-
ling the system is the observer’s state of knowledge about
the system. Even if such a control strategy is too difficult
to implement in practice, it plays the important role of
bounding the performance of any strategy, which helps
in seeking the best practical strategy.

It is well known that the quantum state of an
open quantum system, given continuous-in-time mea-
surements of the bath, follows a stochastic trajectory
through time [5]. In the quantum optics community this
is referred to as a quantum trajectory [6, 7, 8, 9, 10,
11, 12, 13, 14, 15]. The form of this trajectory can be ei-
ther jump-like in nature or diffusive depending on how we
choose to measure the system; that is, the arrangement of
the measuring apparatus. In this paper we review quan-
tum trajectory theory for partially observed systems by
presenting a simple model: A three level atom that emits
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into two separate environments, only one of which is ac-
cessible to our detectors. Such partially observed systems
cannot be described by a stochastic Schrödinger equation
(SSE) [6, 7, 8], but rather requires a more general form
of a quantum trajectory that has been called a stochastic
master equation (SME) [9]. This is an instance of the fact
that the most general form of quantum measurement the-
ory requires the full Kraus representation of operations
[16, 17], rather than just measurement operators [17].

It is also well known that if we have a classical system
and we make measurements on it with a measurement ap-
paratus that has associated with it a Gaussian noise, then
the evolution of this classical state in the continuous-in-
time limit obeys a Kushner-Stratonovich equation (KSE)
[18]. To review these dynamics for partially observed
classical systems we present the KSE for a system that
experiences an ‘internal’ unobservable white noise pro-
cess. That is, the evolution in the absence of the mea-
surements is given by a Fokker-plank equation [19]. This
is the classical analogue to the quantum master equation.

The new work in this paper is a simple numerical tech-
nique that allows us to reduce the numerical resources
required to calculate the continuous-in-time trajectories.
This method relies on the implementation of linear or
‘ostensible’ [12] measurement theory, classical [18] and
quantum [10, 11, 12, 13]. For the classical case our
method reduces the problem from solving the KSE for
the probability distribution to simulating the ensemble
average of two coupled stochastic differential equations
(SDE). For the quantum case our method reduces the
problem from solving a conditional SME to simulating
the ensemble average of a SSE plus a c-number SDE.
Thus in both the classical and the quantum case, our
method reduces the size of the problem by a factor of
N, the number of basis states required to represent the
system.
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Recently Brun and Goan [20] have used a similar
idea to investigate a partially observed quantum system.
However, since they did not use measurement theory with
ostensible probabilities, their claim that they can gen-
erate a typical trajectory conditioned on some partial
record R is not valid. This is demonstrated in detail in
A. (In their method, the record R can only be generated
randomly, and can be found only by doing the ensemble
average over the fictitious noise, but that is not the issue
of concern here.)

Finally, we combine these theories to consider the fol-
lowing case: a quantum system is monitored continu-
ously in time by a classical system but we only have
access to the results of non-ideal measurements per-
formed on the classical system. Note that such joint
systems have recently been studied by Warszawski et al

[21, 22, 23] and Oxtoby et al [24]. Warszawski et al con-
sidered continuous-in-time monitoring of a quantum op-
tical system with realistic photodections while Oxtoby et

al considered continuous-in-time monitoring of a quan-
tum solid-state system with a quantum point contact.
We show that our ostensible numerical technique can be
applied to these types of systems, greatly simplifying the
simulations.

The format of this paper is as follows. In Secs. II and
III we review quantum and classical measurement the-
ory respectively. This is essential as it allows us to de-
fine both the notations and the physical insight that will
be used throughout this paper. In Secs. IV, V, and VI
we investigate the above mentioned quantum, classical
and joint systems respectively, and present our ostensi-
ble numerical technique for each specific case. Finally in
Sec. VII we conclude with a discussion.

II. QUANTUM MEASUREMENT THEORY
(QMT)

A. General theory

In quantum mechanics the most general way we can
represent the state of the system is via a state matrix
ρ(t). This is a positive semi-definite operator that acts
in the system Hilbert space Hs. In this paper we take the
view that this represents our state of knowledge of the
system. Taking this view allows us to simply interpret
the “collapse of the wavefunction”, upon measurement,
as an update in the observer’s knowledge of the system
[25, 26]. If we now assume that we have a measurement
apparatus that allows us to measure observable R of the
system, then the conditional state ρr(t

′) of the system
given result r is determined by [16]

ρr(t
′) =

Ôr(t
′, t)ρ(t)

P (r, t′)
, (2.1)

where P (r, t′) is the probability of getting result r at
time t′ = t + T , where T is the measurement duration

time. Here Ôr(t
′, t) is known as the operation of the

measurement and is a completely positive superoperator
and for efficient measurements can be defined by

Ôr(t
′, t)ρ(t) = Ĵ [M̂r(T )]ρ(t) = M̂r(T )ρ(t)M̂ †

r (T ),
(2.2)

where M̂r(T ) is called a measurement operator. The
probability of getting result r is given by

P (r, t′) = Tr[Ôr(t
′, t)ρ(t)] = Tr[F̂r(T )ρ(t)], (2.3)

where the set {F̂r(T ) = M̂ †
r (T )M̂r(T )} is the positive

operator measure (POM) for observableR. By complete-
ness, the sum of all the POM elements satisfies

∑

r

F̂r(T ) = 1̂. (2.4)

So far we have only considered efficient, or purity-
preserving measurements. That is if ρ(t) was initially
|ψ(t)〉〈ψ(t)| then the state after the measurement would
also be of this form. In a more general theory we must
dispense with the measurement operator M̂r(T ) and de-

fine the Kraus operator K̂r,f (T ) [16]. This has the effect
of changing the definition of the operation of the mea-
surement Ôr(t

′, t) [Eq. (2.2)] to

Ôr(t
′, t) =

∑

f

Ĵ [K̂r,f(T )], (2.5)

and the POM elements for this measurement are now
given by

F̂r(T ) =
∑

f

K̂†
r,f(T )K̂r,f(T ). (2.6)

Note F̂r(T ) still satisfies the completeness condition
[Eq. (2.4)]. We can think of f as labelling results of
fictitious measurement.

If one is only interested in the average evolution of the
system, this can be found via

ρ(t′) =
∑

r

P (r)ρr(t
′) = Ô(t′, t)ρ(t), (2.7)

where Ô(t′, t) =
∑

r Ôr(t
′, t) is the non-selective opera-

tion.

B. Quantum trajectory theory

Quantum trajectory theory is simply quantum mea-
surement theory applied to a continuous in-time moni-
tored system [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In con-
tinuous monitoring, repeated measurements of duration
T = dt are performed on the system. This results in the
state being conditioned on a record R, which is a string
containing the results rk of each measurement from time
0 to t but not including time 0. Here the subscript k
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refers to a measurement completed at time tk = kdt.
From the record R, the conditioned state at time t can
be written as

ρR(t) =
ρ̃R(t)

P (R)
, (2.8)

where ρ̃R(t) is an unnormalized state defined by

ρ̃R(t) = Ôrk
(tk, tk−1) . . . Ôr2

(t2, t1)Ôr1
(t1, 0)ρ(0). (2.9)

The probability of observing the record R is

P (R) = Tr[ρ̃R(t)]. (2.10)

If we now assume that the coupling between the ap-
paratus (bath) and the system is Markovian then the
average state

ρ(t) = Ô(tk, tk−1) . . . Ô(t2, t1)Ô(t1, 0)ρ(0) (2.11)

is equivalent to the reduced state

ρred(t) = Trbath[|Ψ(t)〉〈Ψ(t)|], (2.12)

which itself obeys the Master equation [27]

ρ̇(t) = L̂ρ(t) = −i[Ĥ, ρ(t)] +
∑

j

γjD̂[L̂j ]ρ(t). (2.13)

Here D̂[Â] is the superoperator defined by

D̂[Â]ρ = ÂρÂ† − Â†Âρ/2 − ρÂ†Â/2, (2.14)

and represents dissipation of information about the sys-
tem into the baths.

C. Fictitious quantum trajectories: the ostensible
numerical technique

If the system is only partly observed (f in Eq. (2.5)
represents the unobservable processes) this state will be
mixed. This is not a problem for simple systems but for
a large system a numerical simulation for ρR(t) would
be impractical. This brings us to the goal of this section
which is to demonstrate that ρR(t) can be numerically
simulated by using SSEs, requiring less space to store on
a computer.

To do this we assume that a fictitious measurement
with record F is actually made on the unobservable pro-
cess. Then we can expand ρR(t) to

ρR(t) =
∑

F

ρR,F(t)P (F|R), (2.15)

where

ρR,F(t) = |ψR,F(t)〉〈ψR,F(t)|. (2.16)

Here |ψR,F(t)〉 is a normalised state conditioned on both
F and R. In quantum trajectory theory this is defined
as

|ψR,F(t)〉 =
|ψ̃R,F(t)〉

√

P (F,R)
, (2.17)

where

|ψ̃R,F(t)〉 = M̂rk,fk
(dt)....M̂r1,f1

(dt)|ψ(0)〉. (2.18)

Here rk and fk are the results of the measurement oper-
ator

M̂rk,fk
(dt) = 〈rk|〈fk|Û(tk, tk−1)|0〉|0〉, (2.19)

where |0〉|0〉 is the initial bath state. This indicates that
given that we have a real record R we can calculate ρR(t)
from averaging over an ensemble of pure states |ψR,F(t)〉.
But as shown in A the fact that future real results are not
necessarily independent from the current fictitious results
means that we cannot generate single trajectories with-
out knowing the full solution. However by using quantum
measurement theory with ostensible distributions we can
get around this problem.

Under ostensible quantum trajectory theory [11, 12,
13] we can define a state, |ψ̄R,F(t)〉 as,

|ψ̄R,F(t)〉 =
|ψ̃R,F(t)〉

√

Λ(F,R)
, (2.20)

where Λ(F,R) is an ostensible probability distribution.
This is simply a guessed distribution that only has the
requirement that it be a probability distribution and be
non-zero when P (F,R) is non-zero. Note this state is
no longer normalized to one and this is why we signify it
with the bar. The true probability can be related to the
ostensible probability by

P (R,F) = 〈ψ̄R,F(t)|ψ̄R,F(t)〉Λ(F,R), (2.21)

which is a generalized Girsanov transformation [5, 11, 12,
13, 28].

Going back to Eq. (2.15) and using the above equations
we can write ρR(t) as

ρR(t) =

∑

F
|ψ̄R,F(t)〉〈ψ̄R,F(t)|Λ(F,R)

P (R)
, (2.22)

where

P (R) =
∑

F

〈ψ̄R,F(t)|ψ̄R,F(t)〉Λ(F,R). (2.23)

Note that the sum containing Λ(F,R) in the above equa-
tions simply represents the ensemble average over all pos-
sible fictitious records. Thus we can rewrite Eq. (2.22)
as

ρR(t) =
EF

[

|ψ̄R,F(t)〉〈ψ̄R,F(t)|
]

EF

[

〈ψ̄R,F(t)|ψ̄R,F(t)〉
] . (2.24)
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III. CLASSICAL MEASUREMENT THEORY
(CMT)

A. General theory

In this paper when considering what we call a classical
system, we are referring to a system that can be described
by the probability distribution P (x, t) (i.e a vector of
probabilities) rather than a state matrix. That is, with
respect to a fixed basis x the coherences (off diagonal
elements) are always zero. If we now measure observable
R of the system, then after a measurement which yielded
result r, the state of the system is given by [29]

Pr(x, t) =
P (r, t|x, t)P (x, t)

P (r, t)
, (3.1)

where

P (r, t) =

∫

dxP (r, t|x, t)P (x, t). (3.2)

This is known as Bayes’ theorem. Here Pr(x, t) ≡
P (x, t|r, t) is called a conditional state and represents our
new state of knowledge given that we observed result r.
Here we have only considered minimally disturbing classi-
cal measurements. That is, there is no back action acting
on the system in the measurement process. To general-
ize Bayes’ theorem to deal with measurements which in-
cur back action we mathematically split the measurement
into a two stage process. The first is the Bayesian update,
followed by a second stage described by Br(x

′, t′|x, t), the
probability for the measurement to cause the system to
make a transition from x at time t to x′ at time t′ = t+T ,
given the result r. Thus for all x′, x and r

Br(x
′, t′|x, t) ≥ 0, (3.3)

∫

dx′Br(x
′, t′|x, t) = 1. (3.4)

Now by defining the operation

Or(x
′, t′|x, t) = Br(x

′, t′|x, t)P (r, t|x, t) (3.5)

the conditional system state after the measurement be-
comes

Pr(x
′, t′) =

∫

dxOr(x
′, t′|x, t)P (x, t)

P (r, t′)
, (3.6)

where

P (r, t′) =

∫

dx′
∫

dxOr(x
′, t′|x, t)P (x, t). (3.7)

Using Eq. (3.4) this can be rewritten as

P (r, t′) =

∫

dxFr(x, t)P (x, t), (3.8)

where Fr(x, t) = P (r, t|x, t), which by definition satisfies
∑

r

Fr(x, t) = 1, (3.9)

is the classical analogue of the POM element. The aver-
age evolution of the system is given by

P (x′, t′) =
∑

r

Pr(x
′, t′)P (r, t′)

=

∫

dxO(x′, t′|x, t)P (x, t), (3.10)

where O(x′, t′|x, t) =
∑

r Or(x
′, t′|x, t) is the non-

selective operation.

Note that for any Br(x
′, t′|x, t) that satisfies Eqs. (3.3)

and (3.4) we can rewrite it as

Br(x
′, t′|x, t) =

∑

f

δ[x′ − xr,f (t′)]P (f, t′|x, t; r, t),

(3.11)
where xr,f (t′) is the new system configuration x′ at time
t′ given the measurement result r and extra noise f (the
stochastic part of the back action). The parameter f
is analogous to the fictitious measurement results in the
quantum case. Thus the operation for the measurement
can be written as

Or(x
′, t′|x, t) =

∑

f

δ[x′ − xr,f (t′)]P (f, t′; r, t|x, t),

=
∑

f

Jr,f (x′, t′|x, t). (3.12)

This is the classical equivalent of Eq. (2.5).

In the above we have purposely structured QMT and
CMT so that the theories appear to be similar and as
a general rule we will push this point of view through-
out the rest of this paper. However, it is important to
point out the key differences between these theories. In
the quantum case we can always write the measurement

operator (or Kraus operator) as M̂r = Ûr

√

F̂r where Ur

is a unitary operator. That is we can always interpret a

measurement as a two stage process, where
√

F̂r is re-
sponsible for the wavefunction collapse and the gain in in-
formation by the observer and Ûr is some extra evolution
that entails no information gain (as the entropy of the
system is not changed by this evolution). It simply adds
surplus back action to the system. In the classical case
we can also write the measurement as a two stage pro-
cess. However, the first process by definition has no back
action; it is simply the update in the observer’s knowl-
edge of the system. Furthermore the second stage is not
necessary unitary evolution (and as such can change the
entropy of the system). Thus back action in the quantum
and classical case are physically different processes and
one can not separate all the back action in the quantum
case from the observer’s information gain. Mathemati-
cally speaking, the difference arises from the fact that a
quantum state is represented by a positive matrix, the
state matrix, while a classical state is represented by a
positive vector, the vector of probabilities.
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B. Classical trajectory theory

To achieve continuous-in-time measurements theory
for a classical system we simply let the measurement
time tend to dt and extend the number of consecutive
measurements to t/dt. Then the state of the classical
system given the measurement record R is

PR(x, t) =
P̃R(x, t)

P (R)
, (3.13)

where P̃R(x, t) is an unnormalized state defined by

P̃R(x, t) =

∫

dxk−1...

∫

dx1

∫

dx0

×Ork
(x, t|xk−1, tk−1) . . .Or2

(x2, t2|x1, t1)

×Or1
(x1, t1|x0, 0)P (x0, 0). (3.14)

The probability of observing the record R is

P (R) =

∫

dxP̃R(x, t). (3.15)

If we now assume that the noise added by the measure-
ment apparatus is white, and the form of the back action
is independent of the results R, then the unconditional
state

P (x, t) =

∫

dxk−1...

∫

dx1

∫

dx0

×O(x, t|xk−1, tk−1) . . .O(x2, t2|x1, t1)

×O(x1, t1|x0, 0)P (x0, 0) (3.16)

is the solution of the Fokker Plank Equation [19]

∂tP (x, t) = −∂x[A(x, t)P (x, t)] + 1
2∂

2
x[D2(x, t)P (x, t)],

(3.17)
where A(x, t) determines the amount of drift and D(x, t)
determines the amount of diffusion.

C. Fictitious classical trajectories: The ostensible
numerical technique

The basic principle behind this technique is that we
assume that the unobservable process, F, that generates
the back action part of the measurement is fictitiously
simulated. To be more specific we can define

P̃R,F(x, t) =

∫

dxk−1...

∫

dx1

∫

dx0

×Jrk,fk
(x, t|xk−1, tk−1) . . .Jr2,f2

(x2, t2|x1, t1)

×Jr1,f1
(x1, t1|x0, 0)P (x0, 0). (3.18)

where Jr,f (x′, t′|x, t) is defined implicitly in Eq. (3.12).
From this the conditional state, PR(x, t), is given by

PR(x, t) =
∑

F

PR,F(x, t)P (F|R), (3.19)

where

PR,F(x, t) =
P̃R,F(x, t)

P (R,F)
. (3.20)

But as in the quantum case this cannot be directly cal-
culated and as a result we must use an ostensible theory.
We define the ostensible state by

P̄R,F(x, t) =
P̃R,F(x, t)

Λ(R,F)
, (3.21)

and the true probability can be related to the ostensible
by

P (R,F) =

∫

dxP̄R,F(x, t)Λ(R,F), (3.22)

the classical Girsanov transformation.
Using the above we can rewrite Eq. (3.19) as

PR(x, t) =

∑

F
P̄R,F(x, t)Λ(F,R)

P (R)
, (3.23)

where

P (R) =
∑

F

∫

dxP̄R,F(x, t)Λ(F,R). (3.24)

As in the quantum case we can rewrite Eq. (3.23) as

PR(x, t) =
EF

[

P̄R,F(x, t)
]

EF

[

∫

dxP̄R,F(x, t)
] , (3.25)

where P̄R,F(x, t) is an unnormalized pure classical state.
That is, it is of the form P̄ (x, t) = pR,Fδ[x − xR,F(t)],
where pR,F is the norm of the ostensible state. To show
this we consider a system initially in the state P̄ (x, 0) =
pδ(x − x0) then by using Eqs. (3.21) and (3.18) with
Jr1,f1

(x′, t1|x, 0) defined implicitly in Eq. (3.12) we can
rewrite P̄r1,f1

(x′, t1) as

P̄r1,f1
(x′, t1) = pr1,f1

(t1)δ[x
′ − xf1,r1

(t1)], (3.26)

which is still of the δ-function form. Here pr1,f1
(t1) is

given by

pr1,f1
(t1) = P (f1, t1; r1, 0|x0, 0)p(0)/Λ(r1, f1), (3.27)

and xf1,r1
(t1) is determined by the underlying dynamics.

That is, we can simulate the distribution by solving the
two coupled SDEs, ẋR,F(t) and ṗR,F(t).

IV. A QUANTUM SYSTEM WITH AN
UNOBSERVED PROCESS

To illustrate a quantum system where a complete mea-
surement can not be performed, due to some physical
constraint, the system in Fig. 1 was considered. This
system is a three level atom with lowering operators
L̂1 = |1〉〈3| and L̂2 = |2〉〈3|, and decay rates γ1 and
γ2 respectively.
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FIG. 1: A simple system (a three level atom) which has two

outputs due to the to lowering operators L̂1 and L̂2.���������� �� � ����������	 
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FIG. 2: The solution to the master equation. The first sub-
plot shows ρ33(t) (solid line), ρ22(t) (dashed line) and ρ11(t)
(dotted line). The second and third subplot show the real
and imaginary parts respectively of ρ12(t) (solid line), ρ31(t)
(dashed line) and ρ32(t) (dotted line). The fourth subplot
illustrates the purity of this state. This is all for the initial
condition |ψ(0)〉 = 0.4123|1〉 + 0.1|2〉 + (0.9 + 0.1i)|3〉 and
γ1 = 0.5 and γ2 = 1.

A. Master equation

With no external driving [Ĥ = 0 in Eq. (2.13)], the
solution of the master equation can be determined an-
alytically. To illustrate a non-trivial solution we cal-
culated this solution for the initial condition |ψ(0)〉 =
0.4123|1〉+0.1|2〉+(0.9+0.1i)|3〉 and coupling constants
γ1 = 0.5 and γ2 = 1. This is shown in Fig. 2. In this
figure it is observed that as time goes on, the state be-
comes mixed. This is seen as the purity p(t) = Tr[ρ2(t)]
of the state decays (although not monotonically) as time
increases. This figure also shows that the state becomes
a mixture of the two ground states, with the ground
state associated with the larger coupling constant being
weighted more heavily, even though it started with less
weight.

B. Conditional evolution: The quantum trajectory

In this section we consider the trajectory ρR(t) which

occurs when output L̂1 is monitored using homodyne-x
detection and output L̂2 is un-monitored. A schematic
of this measurement process is shown in Fig. 3. Because

2

R

L

LO

1L
(0, t]

FIG. 3: A schematic representing homodyne measurement of
one of the outputs of the three level atom. In an ordinary
homodyne measurement the signal is coupled to a classical
local oscillator (LO) via a low reflective beam splitter and
then detected using a photoreceiver.

this arrangement is an inefficient measurement we have
to use the operation defined in Eq. (2.5). To determine
the Kraus operators we need to present the underlying
dynamics in more detail. For the interaction of this sys-
tem with a Markovian bath (and under the rotating wave
approximation and in the interaction frame) the total
Hamiltonian is

H(t) = ih̄
√
γ1

∫

δ(t− t′)[L̂1b̂
†
r(t

′) − L̂†
1b̂r(t

′)]dt′

+ih̄
√
γ2

∫

δ(t− t′)[L̂2b̂
†
f (t′) − L̂†

2b̂f (t′)]dt′.

(4.1)

Here b̂r(t) and b̂f (t) are the temporal-mode annihilation

operators for the detected (b̂r) and non-detected (b̂f )
fields (baths). Since these fields are Markovian there will
be a commutator relationship for the field of the following
form

[b̂i(t), b̂
†
j(s)] = δ(t− s)δi,j , (4.2)

where i, j denotes either of the two baths. This indicates
that the field operators are gaussian white noise opera-
tors. Thus they obey Itô calculus and the infinitesimal
evolution operator is [7, 15]

Û(t+ dt, t) = exp
{√

γ1 [L̂1dB̂
†
r(t) − L̂†

1dB̂r(t)]

+
√
γ2 [L̂2dB̂

†
f (t) − L̂†

2dB̂f (t)]
}

, (4.3)

where dB̂i satisfies the commutator relation

[dB̂(t)i, dB̂
†
j (t)] = dtδi,j . (4.4)

Thus Û(t+dt, t) is an operator acting in the Hilbert space
Hs ⊗ Hr ⊗ Hf , where Hs, Hr and Hf are the Hilbert
spaces for the system, detected field and non detected
field respectively.

Now, given that a projective measurement is made on

bath field b̂r(t) and bath field b̂f (t) is completely unob-
served the state of the system after this measurement
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(time dt later) is given by Eqs. (2.1) and (2.5) with
T = dt, and the Kraus operator is

K̂r,f (dt) = 〈f |f 〈r|rÛ(t+ dt, t)|0〉r|0〉f . (4.5)

Here {|r〉r} is the set of orthogonal states the bath is
projected into, while {|f〉f} is any arbitrary orthogonal

basis set. For a homodyne-x measurement of bath b̂r(t)
the set {|r〉r} corresponds to the eigenset of the operator

dB̂r(t)+dB̂
†
r(t) [11] and the results r are the correspond-

ing eigenvalues. Note we have assumed that initially the
baths, for all the temporal-modes, are in the vacuum
state.

After some simple rearrangement and using (rdt)2 =
dt, the POM elements for this measurement are of the
form

F̂r(dt) = |〈r|0〉r|2[1 +
√
γ1 r(t+ dt)dtx̂1], (4.6)

where x̂1 = L̂1 + L̂†
1. Thus

P (r, t+ dt) = |〈r|0〉|2[1 + rdt
√
γ1 〈x̂1〉t], (4.7)

where 〈x̂1〉t = Tr[x̂1ρ(t)]. Using the fact that |r〉 is a
temporal-quadrature state,

|〈r|0〉r |2 =

√

dt

2π
exp

(

− r2

2/dt

)

, (4.8)

we can rearrange this to

P (r, t+ dt) =

√

dt

2π
exp

[

− [r −√
γ1 〈x̂1〉t]2

2/dt

]

. (4.9)

This implies that the random variable associated with
this distribution, r(t + dt)dt, is a gaussian random vari-
able (GRV) of mean

√
γ1 〈x̂1〉tdt and variance dt. That

is,

r(t + dt)dt = dW (t) + dt
√
γ1 〈x̂1〉t, (4.10)

where dW (t) is a Wiener increment [19].
Using the above and Eqs. (2.1) and (2.5) the stochastic

master equation for this system is

dρR(t+ dt) = dt
(

γ2D[L̂2] + γ1D[L̂1]

+dW (t)
√
γ1 H[L̂1]/dt

)

ρR(t),

(4.11)

where H[Â] is the superoperator

H[Â]ρ = Âρ+ ρÂ† − Tr[Âρ+ ρÂ†]ρ. (4.12)

To illustrate an example quantum trajectory,
Eq. (4.11) was solved for a randomly chosen record
R and the same parameters used in Fig. 2. This is
shown in Fig. 4. It is observed that this state evolution
is stochastic in time and becomes mixed (but not as
mixed as the average evolution). It is interesting to note
that by performing this measurement the coherence
ρ12,R(t), which was a constant of motion for the average
state, becomes comparable to the other coherence and
does not decay with time.

���������
����������

� ������������
� � � � � �������	���
� �� ��� �

� �� �� ���� �� �
� �
 �

����� � �
G

�
ï !

FIG. 4: The solution to ρR written in matrix elements. The
first subplot shows ρ33,R(t) (solid line), ρ22,R(t) (dashed line),
ρ11,R(t) (dotted line). The second and third subplot show
the real and imaginary parts respectively of ρ12,R(t) (solid
line), ρ31,R(t) (dashed line) and ρ32,R(t) (dotted line). The
fourth subplot illustrates the purity. We have used the same
parameters as in Fig. 2

C. The ostensible numerical technique

In Sec. II C we observed that the conditional evolu-
tion of a partly monitored system could be simulated by
assuming that fictitious measurements are made on the
unobservable process. For this system we assume that
a fictitious homodyne-x measurement is made on output
L̂2. Note we could have chosen any unraveling for F.

To determine the SSE for the ostensible state |ψ̄R,F(t)〉
[the state which we substitute into Eq. (2.24) to deter-
mine the actual conditional evolution] we have to derive
the measurement operator for the combined real and fic-
titious measurements, as well as make a convenient choice
for Λ(F,R). Using Eq. (2.19) and the fact that we are
performing homodyne-x measurements the measurement
operator is

M̂r,f(dt) = 〈f |0〉〈r|0〉
(

1 +
√
γ1 rdtL̂1 +

√
γ2 fdtL̂2

−γ1dtL̂
†
1L̂1/2 − γ2dtL̂

†
2L̂2/2

)

, (4.13)

where the bath states |f〉 and |r〉 are temporal quadrature
states acting in Hilbert spaces Hf and Hr respectively.
To derive this we have expanded Eq. (4.3) to first order
in dt and used the fact that (fdt)2 = (rdt)2 = dt. Since
the real distribution is Gaussian (with a variance 1/dt) a
convenient choice for Λ(F,R) is Λ(F)Λ(R) where Λ(F) =
Λ(fk) . . .Λ(f1) and Λ(R) = Λ(rk) . . .Λ(r1) with

Λ(r) =

√

dt

2π
exp

[

− (r − λ)2

2/dt

]

(4.14)
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Λ(f) =

√

dt

2π
exp

[

− (f − µ)2

2/dt

]

. (4.15)

Here λ and µ are arbitrary parameters. With these os-
tensible distributions, Eq. (4.13), and Eq. (2.20), the os-
tensible SSE is

d|ψ̄R,F(t)〉 = dt
(

[r − λ](
√
γ1 L̂1 − λ/2) + [f − µ]

×(
√
γ1 L̂2 − µ/2) − 1

2 [γ1L̂
†
1L̂1 + γ2L̂

†
2L̂2

−√
γ1 λL̂1 −

√
γ2 µL̂2 + λ2/4 + µ2/4]

)

×|ψ̄R,F(t)〉. (4.16)

Now since we are interested in calculating ρR(t) based
on an assumed known real record R, we can rewrite
Eq. (4.16) as

dc1 = c3[
√
γ1 (r − λ)dt+ dtλ/2] − c1[

√
γ2 dWµ

+
√
γ1 (r − λ)dtλ + dtλ2/4 + dtµ2/4]/2,(4.17)

dc2 = c3[
√
γ2 dW + dtµ/2] − c2[

√
γ2 dWµ

+
√
γ1 (r − λ)dtλ + dtλ2/4 + dtµ2/4]/2(4.18)

dc3 = c3[−γdt+
√
γ2 dWµ+

√
γ1 (r − λ)dtλ

+dtλ2/4 + dtµ2/4]/2, (4.19)

where γ = γ1 + γ2. Here we have used the identity

|ψ̄(t)〉 = c1|1〉 + c2|2〉 + c3|3〉, (4.20)

and replaced fdt with dW(t) + µdt, where dW(t) is a
Wiener increment.

To illustrate the convergence of our method the ensem-
ble average of the above ostensible SSE for λ = µ = 0
was calculated for n = 10 and n = 1000. To quantify
how closely the ensemble method reproduces ρR(t) we
used the fidelity measure, which for two different quan-
tum states is defined as

F (Q)(t) = Tr[

√

√

ρ1(t) ρ2(t)
√

ρ1(t) ]. (4.21)

Note this measure ranges from 0 to 1 with 0 indicating
two orthogonal states and 1 indicating the same state.
The result of this measure for the actual ρR(t) and the
ensemble version are shown in part A of figure 5. Here
we see that for larger ensemble size the fidelity is closer
to one, indicating that as we increase the ensemble size
our ostensible method approaches the actual ρR(t).

To illustrate the effect of choosing different ostensible
distributions we considered the case when λ = 0 and

µ =
√
γ2

〈ψ̄R,F(t)|L̂2 + L̂†
2|ψ̄R,F(t)〉

〈ψ̄R,F(t)|ψ̄R,F(t)〉 . (4.22)

That is, the ostensible probability for the kth fictitious
results is the true probability we would expect based on
the past real and fictitious results up to, but not includ-
ing the time kdt. The motivation for this choice is that
with µ = 0, the improbable trajectories, ones that tend

���� � ��

��	
�� �
Gï������ � ��

FIG. 5: This figure shows the fidelity between the actual ρR(t)
and our ensemble method for ensembles sizes 10 (dotted) and
1000 (solid). Part A corresponds to a linear ostensible distri-
bution while part B refers to the non-linear ostensible distri-
bution. The same parameters were used as in Fig. 2.

towards being inconsistent with the full real record, will
have norms that are very small and as such have little
contribution to the ensemble average. By contrast, us-
ing Eq. (4.22), the improbable trajectories are less likely
to be generated, so avoiding useless simulations. With
this ostensible distribution the fidelity measure was cal-
culated for n = 10 and n = 1000. These results are shown
in part B of figure 5. Here we see that for the smaller
ensemble size the fidelity is closer to one than that ob-
served using the first ostensible case. This indicates that
the rate of convergence for this case is greater than the
λ = µ = 0 case.

V. A CLASSICAL SYSTEM WITH AN
INTERNAL UNOBSERVED PROCESS

In this section we consider continuous-in-time mea-
surements with Gaussian precision of a classical system
driven by an unobservable noise process. This for ex-
ample could correspond to a measurement of the voltage
across a resistor that is driven by a noisy classical current.

A. The average evolution

We restrict ourselves to unconditional state evolution
described by the Fokker Plank equation Eq. (3.17). This
equation has as its solution a distribution that diffuses
and drifts though time. Using Eq. (3.10) and only con-
sidering one interval in time we can write

P (x′, t+ dt) =

∫

dxO(x′, t+ dt|x, t)P (x, t), (5.1)
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which when compared to Eq. (3.17) implies that RHS of
the above equation equals

∫

dx[1 − dt∂x′A(x, t) + dt∂2
x′D2(x, t)/2]δ(x′ − x)

×P (x, t). (5.2)

By introducing an arbitrary Gaussian distribution
P (f, t+ dt) with mean m(t) and variance 1/dt, that is

P (f, t+ dt) =

√

dt

2π
exp

[

− [f −m(t)]2

2/dt

]

, (5.3)

Eq. (5.2) can be rewritten as

∫

dfP (f, t+ dt)

∫

dx[1 − dt∂x′A(x, t) − dt[f −m(t)]

×∂x′Df (x, t) + dt∂2
x′D2(x, t)/2]δ(x′ − x)P (x, t).

(5.4)

By using Itô calculus and a Taylor expansion this can be
rewritten as
∫

dxEf

{

δ[x′ − x− dtA(x, t) − dt[f(t+ dt) −m(t)]

×D(x, t)]
}

P (x, t). (5.5)

where f(t+ dt)dt = m(t)dt+ dW(t). Thus

O(x′, t+ dt|x, t) = Ef

{

δ[x′ − xf (t+ dt)]
}

, (5.6)

where xf (t+ dt) is determined by the following SDE

dxF(t) = dtA[xF(t), t] + dt[f(t+ dt) −m(t)]D[xF(t), t].
(5.7)

Note here we have written the SDE for the complete
record F.

B. Conditional evolution: The
Kushner-Stratonovich equation

To derive the KSE we start by deriving Or(x
′, t′|x, t)

and P (r, t+dt). For the case when the classical measure-
ment has a back action that is independent of the result
r(t+ dt), the operation for the measurement is given by

Or(x
′, t′|x, t) = O(x′, t′|x, t)P (r, t|x, t), (5.8)

where O(x′, t′|x, t) = B(x′, t′|x, t). Thus to derive
Or(x

′, t′|x, t) we need only P (r, t|x, t). For a measure-
ment that has a precision limited by Gaussian white noise
it follows that

P (r, t|x, t) = Fr(x, t) =

√
dt√

2πβ
exp[−(r − x)2dt/2β],

(5.9)
where β is a constant characterizing the classical mea-
surement strength.

To find P (r, t) we substitute Eq. (5.9) into Eq. (3.8).
This gives

P (r, t+ dt) =

∫

dx

√
dt√

2πβ
exp[−(r − x)2dt/2β]P (x, t).

(5.10)
After some simple stochastic algebra and using r2 = β/dt
this can be simplified to [22]

P (r, t+ dt) =

√
dt√

2πβ
exp[−(r − 〈x〉t)2dt/2β], (5.11)

where for the classical system 〈x〉t =
∫

xP (x, t)dx. From
Eq. (5.11) the stochastic representation of r(t + dt) is a
Gaussian random variable with mean 〈x〉t and variance
βdt. That is,

r(t+ dt) = 〈x〉t +
√

βdW (t)/dt. (5.12)

With all the above information and Eq. (3.6) the con-
ditional state at time t′ = t+ dt is

Pr(x
′, t+ dt) =

∫

dxEf

{

δ[x′ − xf (t+ dt)]
}{

1

+[x− 〈x〉t][r − 〈x〉t]dt/β
}

P (x, t). (5.13)

Here we have expanded the exponentials in Eq. (5.11)
and Eq. (5.9) to second order in dt and used r2 = β/dt.
Taylor expanding the delta function and averaging over
the f(t+ dt) [using Eq. (5.3)] for each step in time gives
the KSE

PR(x, t+ dt) = PR(x, t) + dt[x− 〈x〉t][r(t + dt) − 〈x〉t]
×PR(x, t)/β − dt∂x[A(x, t)PR(x, t)]

+ 1
2dt∂

2
x[D2(x, t)PR(x, t)] (5.14)

and 〈x〉t becomes
∫

xPR(x, t)dx. In general to solve this
equation we need to solve for all x. For some A(x, t) and
D(x, t) this can be a rather lengthy numerical problem.
In the following section we will present our ostensible
technique which allows us to reformulate the problem to
solving two coupled SDEs, at the cost of performing an
ensemble average.

C. The ostensible numerical technique

As shown in Sec. III C, if we consider the unobservable
process F as actually occurring then we can simulate the
KSE by using Eq. (3.25), and P̄R,F(x, t) is determined by
solving two coupled SDEs. For the case when the classical
measurement has Gaussian precision and the back action
only depends on the white noise process f(t), we can
rewrite P (f, t′; r, t|x, t) in Eq. (3.27) as P (f, t′)P (r, t|x, t)
where P (f, t′) is given by Eq. (5.3) and P (r, t|x, t) is given
by Eq. (5.9). Thus ẋR,F(t) becomes ẋF(t) and is given
by Eq. (5.7). To find the differential equation for ṗR,F(t)
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we need to assume a form for the ostensible distribution
Λ(f, r). We use Λ(f, r) = Λ(f)Λ(r), where

Λ(r) =

√

dt

2π
exp

[

− (r − λ)2

2β/dt

]

(5.15)

and Λ(f) is given by Eq. (4.15). Extending Eq. (3.27) to
continuous measurements gives

dpR,F(t) = dt[m(t) − µ][f(t+ dt) − µ]pR,F(t)

+dt[x(t) − λ][r(t + dt) − λ]pR,F(t)/β.

(5.16)

Thus to determine P̄R,F(x, t) we only need to simu-
late Eqs. (5.7) and (5.16) with R assumed known and
f(t + dt) given by Eq. (4.15). PR(x, t) is then deter-
mined by Eq. (3.23). Since the theory requires P̄R,F(x, t)
to be a delta function, one might conclude that this
method is only valid for initial conditions of the form
P (x, 0)ρ(0) = δ(x − x0). Infact, we are not limited to
this case. To consider other initial conditions we simply
choose the initial value x0 in Eq. (5.7) from the distribu-
tion P (x, 0).

D. A simple example

To illustrate the classical theory we consider a Gaus-
sian measurement of a classical system that is driven by
an an unobservable white noise process with m(t) = 0
and drift and diffusion functions given by

A(x, t) = −kx+ l, (5.17)

D(x, t) = b. (5.18)

If this is the case then PR(x, t) has a Gaussian solution
with a mean 〈xR〉t and variance νR(t) given by

d〈xR〉t = dt{νR(t)[r(t + dt) − 〈xR〉t]/β − k〈xR〉t
+l}, (5.19)

dνR(t) = dt[−ν2
R(t)/β − 2kνR(t) + b2], (5.20)

and r(t+dt) = 〈xR〉t +dW (t). That is, as time increases
the measurement has the effect of reducing the variance
but the diffusive coefficient b causes this variance to in-
crease. The mean, however contains both the determin-
istic evolution and a random term due the measurement.
To illustrate this solution we have simulated Eqs. (5.19)
and (5.20) for the case when A(x, t) = 1 − x, D = 1 and
β = 1. The results of this simulation are shown in Fig. 6
as a solid line. Here we see that the mean follows some
stochastic path conditioned on the record R, while the
variance follows a smooth function.

To illustrate our ostensible method we use the above
record and solve numerically Eqs. (5.7) and (5.16) with
λ = µ = 0. The mean and variance is then found via

〈xR〉t =
EF

[

xF(t)pR,F(t)
]

EF

[

pR,F(t)
] (5.21)

� � � � � ��� �����������
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FIG. 6: The mean and variance of PR(x, t) when β = 1,
A = 1 − x and D = 1 for both PR(x, t) calculated exactly
(solid) and via the linear method for an ensemble size of 10
000 (dotted).

νR(t) =
EF

[

x2
F
(t)pR,F(t)

]

EF

[

pR,F(t)
] − 〈xR〉2t

(5.22)

where EF denotes an ensemble average over all possible
fictitious records. The numerical values for the mean
and variance are shown in Fig. 6 (dotted) for an ensem-
ble size of 10 000. To get an indication of the numeri-
cal error in the solution from our method, the difference
from the exact solution is shown in Fig. 7. The dotted
line corresponds to an ensemble of 100 and the solid to
one of 10 000. Here we see that the ostensible method
solution agrees well with the exact solution and as we
increase the ensemble size the difference between these
solutions decreases. To get a better indication of how
well our method reproduces the actual PR(x, t), we also
calculated the classical fidelity, which is defined by

F (C)(t) =

∫

dx
√

P1(x, t)
√

P2(x, t) . (5.23)

This was calculated under the assumption that the state
calculated via the ostensible method was also Gaussian.
This is illustrated in Fig. 7, where we see that for the
larger ensemble the fidelity is very close to one, implying
that the distributions are almost identical.

VI. AN UNOBSERVABLE QUANTUM SYSTEM
DRIVING A CLASSICAL SYSTEM

In this section we consider the following situation: a
quantum system is monitored continuously in time by a
classical system. This in turn is measured with Gaussian
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FIG. 7: The first and second plot show the difference between
the mean and variance of PR(x, t) calculated by the linear
method and the know result for ensemble sizes 100 (dotted)
and 10 000 (solid). The third plot shows the Fidelity between
PR(x, t) calculated by the linear method and the know re-
sult for ensemble sizes 100 (dotted) and 10 000 (solid). The
parameters are the same as in Fig. 6.

precision, and these are the only results to which we have
access. This for example occurs when the signal from the
quantum system enters a detector with a bandwidth B,
resulting in the state of the detector being related to F

by [22]

x(t) =

∫ t

−∞

dsB exp[−B(t− s)]f(s). (6.1)

Thus in a measurement that reveals x(t) with perfect
precession [eg Fr(x) = P (r, t|x, t) = δ(r − x)] we could
determine F (the quantum signal) by inverting the con-
volution in Eq. (6.1). But if this measurement has Gaus-
sian precision [Eq. (5.9)] then we must treat the state
of the detector as a classical probability distribution and
use a mixture of CMT and QMT to describe the condi-
tional state of the supersystem (classical and quantum
system). To denote the supersystem we use the nota-
tion ρ(x, t), where x refers to the classical configuration
space and ρ denotes an object acting on a Hilbert space.
This has the interpretation whereby P (x, t) = Tr[ρ(x, t)]
is the (marginal) classical state and ρ(t) =

∫

ρ(x, t)dx is
the (reduced) quantum state. For uncorrelated quantum
and classical states, ρ(x, t) = P (x, t)ρ(t).

A. Conditional evolution

We denote the state of the supersystem conditioned
on the classical result r at time t + dt as ρr(x, t + dt).
Assuming that the quantum system is not affected by
the classical system, this can be expanded as

ρr(x, t+ dt) =
∑

f

Pr(f, t+ dt)Pr,f (x, t+ dt)ρf (t+ dt),

(6.2)

where ρf (t + dt) is the state that an observer who had
access to all the quantum information would ascribe to
the quantum system. That is, f(t+ dt) can be regarded
as really existing (with the collapse of the wavefunction
occurring at this level); it is just that the real observer
does not have access to this information. The state of
knowledge of this real observer is different from, but con-
sistent with, that of the hypothetical observer who has
access to F.

In terms of the operation of the measurement, the con-
ditional state can be written as

ρr(x
′, t+ dt) =

ρ̃r(x
′, t+ dt)

P (r, t+ dt)
, (6.3)

where

ρ̃r(x
′, t+ dt) =

∫

dx
∑

f

Jr,f (x′, t+ dt|x, t)

×Ôf (t+ dt, t)ρ(x, t)/P (f, t+ dt) (6.4)

and

P (r, t+ dt) =

∫

dx′Tr
[

ρ̃r(x
′, t+ dt)

]

. (6.5)

The quantum part of the operation of measurement in
defined by Eq. (2.5) and the classical part is defined in
Eq. (3.12) with the replacement of P (f, t′; r, t|x, t) →
P (f, t′)P (r, t|x, t) because in this system the quantum
signal does not depend on the classical state.

To illustrate the above we consider the case when we
are monitoring with Gaussian precision the classical sys-
tem defined by Eq. (6.1) which is in turn monitoring the
x quadrature flux coming from a classically driven two
level atom (TLA). This is the same as the system con-
sidered in Ref [22] and as such we will simply list the
important equations. The quantum part of operation is
given by Ôf (t+ dt, t) = Ĵ [M̂f (dt)] where

M̂f (dt) = 〈f |0〉[1 − dt(iĤ −√
γ fσ̂ + γσ̂†σ̂/2)]. (6.6)

The fictitious quantum signal statistic obeys

P (f, t+ dt) =

∫

dxTr[Ôf (t+ dt, t)ρ(x, t)], (6.7)

which for a homodyne-xmeasurement can be shown to be
of the form displayed in Eq. (5.3) with m(t) =

√
γ Tr[(σ̂+

σ̂†)ρ(t)]. Here σ̂ is the lowering operator for the TLA
and γ is the decay rate. Note here we have assumed
all the quantum signal is fed into the classical system, if
we wanted to simulate some inefficiency we would simply
use the Kraus represention, and for the case where this
inefficiency is a constant, η, we simply replace σ in the
above equations by

√
η σ.

As shown in Sec. V for a classical measurement with
Gaussian precision and a back action that does not de-
pend on the results of the measurement, the classical part
of the operation is

Jr,f (x′, t+dt|x, t) = δ[x′−xf (t+dt)]P (f, t+dt)P (r, t|x, t),
(6.8)
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where P (r, t|x, t) is defined in Eq. (5.9) and xf (t+ dt) is
given by Eq. (5.7). For the system we are considering, to
find A(x, t) and D(x, t) we simply differentiate Eq. (6.1)
and equate this with Eq. (5.7). Doing this gives

A(x, t) = −Bx+Bm(t), (6.9)

D(x, t) = B. (6.10)

Combining the quantum and classical parts of the op-
eration and using the same techniques as in Sec. V B
allows us to rewrite Eq. (6.3) for continuous-in-time mea-
surements as

dρR(x, t) = dt
(

B∂xx+ 1
2B

2∂2
x + L̂

)

ρR(x, t)

+dt
( [x− 〈xR〉t][r(t+ dt) − 〈xR〉t]

β

)

ρR(x, t)

−dt√γ ∂xB[σ̂ρR(x, t) + ρR(x, t)σ̂†], (6.11)

where 〈xR〉t =
∫

xTr[ρR(x, t)]dx and

r(t + dt)dt = 〈xR〉tdt+
√

β dW (t). (6.12)

This equation (6.11) has been labeled the Superoperator-
Kushner-Stratonovich equation [22] and represents the
evolution of the combined supersystem. The first line
contains the free evolution for both the quantum and the
classical systems. For this quantum system

L̂[σ̂]ρ =
−iΩ

2
[σ̂x, ρ] + γD̂[σ̂]ρ, (6.13)

where Ω is the Rabi frequency and D̂ is the damping su-
peroperator and is defined in Eq. (2.14). The second line
of Eq. (6.11) describes the gaining of knowledge about
the state of classical system via Gaussian measurements.
Lastly the third line describes the coupling of the quan-
tum and classical system.

For a TLA we can write the state of the supersystem
as

ρ(x, t) = 1
2 [P (x, t)1̂ +X(x, t)σ̂x + Y (x, t)σ̂y + Z(x, t)σ̂z ].

(6.14)
Note that P (x, t) is the marginal state of knowledge for
the classical system (found via tracing out the quantum
degrees of freedom). Substituting this into Eq. (6.11)
gives the following four coupled partial differential equa-
tions

ṖR = [x− 〈xR〉t][r − 〈xR〉t]PR/β +B∂x[xPR

−√
γ XR] + 1

2B
2∂2

xPR (6.15)

ẊR = [x− 〈xR〉t][r − 〈xR〉t]XR/β + 1
2B

2∂2
xXR

+B∂x[xXR −√
γ PR −√

γ ZR] − 1
2γXR (6.16)

ẎR = [x− 〈xR〉t][r − 〈xR〉t]YR/β +B∂x[xYR]

+ 1
2B

2∂2
xYR − ΩZR − 1

2γYR (6.17)

ŻR = [x− 〈xR〉t][r − 〈xR〉t]ZR/β +B∂x[xZR

+
√
γ XR] + 1

2B
2∂2

xZR + ΩYR − γ(PR + ZR).

(6.18)
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FIG. 8: ρR(x, t) calculated via numerical integration (solid)
and via the ostensible method for an ensemble size of 10 000
(dotted). The parameters are β = 0.5, B = 2, γ = 1 and
Ω = 5 and initial conditions ρ(x, 0) = P (x)|g〉〈g| where P (x)
is a Gaussian with mean zero and variance 0.1.

To determine the state of knowledge for the quantum
system we simply integrate out the classical degrees of
freedom.

To illustrate a trajectory for this supersystem the fol-
lowing parameters were used; β = 0.5, B = 2, γ = 1
and Ω = 5. The results are shown in Fig. 8 (solid line)
for a randomly chosen record R. This figure displays the
mean and the variance of the classical trajectory found
via tracing over the quantum degrees of freedom as well
as the quantum state in Bloch representation after we
have integrated out the classical degrees of freedom.

B. Fictitious trajectories: The ostensible numerical
technique

In the above section we observed that to be able to
calculate the supersystem trajectory we needed to solve
four coupled partial differential functions (each involving
derivatives with respect to a classical configuration coor-
dinate x). This is a rather lengthy calculation which for
higher dimensional (d) quantum systems will require d2

partial differential equations. Here we present our linear
method that allows us to reduce the problem to d + 2
couple differential equations. The expense, again, is that
an ensemble average must be performed.

To do this we simply note that we can define the fol-
lowing quantum and classical states

ρ̄f (t+ dt) =
Ôf (t+ dt, t)ρ(t)

Λ̄(f)
(6.19)

and

P̄r,f (x′, t+dt) =

∫

dxŌr,f (x′, t+ dt|x, t)P (x, t)

Λ(f)Λ(r)
, (6.20)
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where

Ōr,f (x′, t+ dt|x, t) = δ[x′ − xf (t+ dt)]P (r, t|x, t)Λ̄(f).
(6.21)

Note the bar above Λ̄(f) means that the ostensible dis-
tribution used to scale the quantum state does not have
to be the same as that used to scale the classical state.
Here for simplicity we consider only the case when they
are the same (as no numerical advantage is gain by differ-
ent choices). Using the above equations we can rewrite
Eqs. (6.3) and (6.5) as

ρr(x
′, t+ dt) =

∑

f Λ(f)Λ(r)P̄r,f (x′, t+ dt)ρ̄f (t+ dt)

P (r, t+ dt)
,

(6.22)

P (r, t+ dt) =

∫

dx
∑

f

Tr[Λ(f)Λ(r)P̄r,f (x, t+ dt)

×ρ̄f (t+ dt)]. (6.23)

Thus to simulate ρR(x, t) we need only to calculate
P̄R,F(x, t) and ρ̄F(t) for a specific record R.

For the above TLA-classical detector system with Λ(r)
and Λ(f) defined by Eqs. (5.15) and (4.15) respectively,
P̄R,F(x′, t) has a solution of the form pR(t)δ[x′−xR,F(t)]
where xF(t) is given by

dxF(t) = dt[−BxF(t) +Bf(t+ dt)] (6.24)

and pR,F(t) is given by

dpR,F(t) = dt[xF(t) − λ][r(t + dt) − λ]pR,F(t)/β, .
(6.25)

Thus we can rewrite Eq. (6.22) as

ρR(x, t) =
EF

[

δ[x− xF(t)]pR,F(t)ρ̄F(t)
]

EF

[

pR,F(t)p̌F(t)
] , (6.26)

where p̌F(t) = Tr[ρ̄F(t)].
To determine the evolution of the ostensible quantum

state we simply substitute the measurement operator de-
fined in Eq. (6.6) with Ĥ = Ωσ̂x/2 and the ostensible
distribution Λ(f) into Eq. (6.19). Doing this gives

dρ̄F(t) = dt
−iΩ

2
[σ̂x, ρF(t)] + dtγD̂[σ̂]ρF(t) +

dt[f(t+ dt) − µ][
√
γ σ̂ρF(t)

+
√
γ ρF(t)σ̂† − µρF(t)]. (6.27)

However since we have assumed that all the quantum sig-
nal is fed into the detector the evolution of the ostensible
quantum state can be written as an ostensible SSE. That
is,

d|ψ̄F(t)〉 = dt
(

− iΩ

2
σ̂x + [f(t+ dt) − µ](

√
γ σ̂ − µ/2)

− 1
2 [γσ̂†σ̂ −√

γ µσ̂ + µ2/4]
)

|ψ̄F(t)〉. (6.28)

Thus to determine ρR(x, t) all we need to do is solve
the above SSE and Eqs. (6.24) and (6.25) for R assumed
known and f(t+dt)dt = dW+dtµ where dW is a Wiener
increment. Once solved the quantum state conditioned
on R is given by

χR(t) =
EF

[

pR,F(t)χ̌F(t)
]

EF

[

pR,F(t)p̌F(t)
] , (6.29)

where χi = {x̌i, y̌i, ži} are the Bloch vectors of the quan-
tum state. The moments of the classical state are given
by

〈xm
R
〉t =

EF

[

xm
F

(t)pR,F(t)p̌F(t)
]

EF

[

pR,F(t)p̌F(t)
] . (6.30)

To illustrate this method we considered two choices
for the ostensible distributions. The first is λ = µ = 0;
that is, all the ostensible distributions are Gaussian
distributions of mean zero and variance dt. The sec-
ond case corresponds to the situation when λ = 0 and
µ =

√
γ Tr[(σ̂ + σ̂†)ρF(t)]; that is, the fictitious distri-

bution is treated as the real unobservable distribution.
Both cases were simulated to show the robustness of our
numerical technique and to demonstrate that while any
ostensible distributions can be chosen a more realistic
choice will result in a faster convergence. To demon-
strate this we numerically solved Eq. (6.11) and used
this as our reference solution. Then we compared the
mean and variance of the classical marginal states and
the fidelity for quantum reduced states (using Eq. (4.21)
once the classical space has been removed) for both os-
tensible cases and with ensemble sizes of 100 and 10 000.
These results are shown Fig. 9 where it is observed that
for the larger ensemble size the difference in the classical
marginal state is small and the quantum fidelity is close
to one, indicating that our ostensible method has repro-
duced the known result and is converging. Furthermore
it is observed that for the second case for the same en-
semble size this difference is smaller thereby indicating
that the second method convergence is faster.

VII. DISCUSSION AND CONCLUSION

The central topic of this paper was to investigate the
conditional dynamics of partially observed systems (clas-
sical and quantum). Due to the fact that the information
obtained is incomplete we have to assign a mixed state to
the system. For a quantum system this means the state
of knowledge given result r is given by the state matrix
ρr(t) and for a classical system a probability distribution
Pr(x, t) has to be used. If we consider a joint system (for
example a classical detector is used to monitor a quantum
system) the conditional state is given by ρr(x, t).

Even when we consider continuous-in-time monitoring
we can still have incomplete information because of un-
observed processes. For this case the conditional state
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FIG. 9: This figure shows the quantum and classical fidelity
between the actual solution and our ostensible solution for
ρR(x, t). Part A corresponds to the λ = µ = 0 case while
part B represents the λ = 0 and µ =

√
γ Tr[(σ̂ + σ̂†)ρF(t)]

case. In both case an ensemble size of n = 100 (dotted) and
n = 10000 (solid) was used. The system parameters are the
same as in Fig. 8.

trajectories obey either a stochastic master equation (for
a quantum system), a Kushner Stratonovich equation
(for a classical system) or a superoperator Kushner-
Stratonovich equation (for the joint system). That is, to
simulate the conditional state we have to solve a rather
numerically expensive equation. In this paper we showed
that by introducing a fictitious record F for the unob-
served processes and ostensible measurement theory we
can reduce this problem to solving pure states (stochas-
tic Schrödinger equations for the quantum system or
stochastic differential equations for the classical system)
conditioned on both R and F. Then by averaging over
all possible F we get the require conditional state. That
is the numerical memory requirements are decreased by
a factor of N , the number of basis states for the system.
However, this is at the cost of an ensemble average.

In summary, our ostensible method will be useful for
investigating realistic situations where the dimensions of
the systems are large. It is also much easier to implement
numerically than the standard technique, so we expect it
to find immediate applications.

Acknowledgments

We would like to acknowledge the interest shown
and help provided by K. Jacobs and N. Oxtoby. This
work was supported by the Australian Research Council
(ARC) and the State of Queensland.

APPENDIX A: WHY IT IS NECESSARY TO USE
THE OSTENSIBLE METHOD

To show that we must use an ostensible distribution
rather then the real distribution, for our numerical tech-
nique, we consider two consecutive measurements. The
state of the system (which we take to be quantum for
specificity) after these two measurement is

ρr2,r1
=

∑

f2,f1

P (f2, f1|r2, r1)ρr2,f2,r1,f1

=

∑

f2,f1
Ĵ [M̂f2,r2

M̂f1,r1
]ρ(0)

P (r1, r2)
. (A1)

This can be rewritten as

ρr2,r1
=

∑

f2,f1

Ĵ [M̂f2,r2
]Ĵ [M̂f1,r1

]ρ(0)

P (r2, f2|r1, f1)P (r1, f1)

P (r2, f2, r1, f1)

P (r1, r2)
.

(A2)
The first term can be viewed as the part that determines
the trajectory and the second term as the part which
determines the weighting factor for this trajectory. Con-
sidering only the weighting factor we can rewrite this as
P (f2, f1|r2, r1), which, unless we have the full numerical
solution, is not determinable. To be more specific we can-
not separate this term into P (f1)P (f2|f1, r1) and thus we
cannot create a trajectory that steps through time with
the correct statistics for fk.

However by introducing an ostensible distribution we
can rewrite Eq. (A2) as

ρr2,r1
=

∑

f2,f1

ρ̄f2,r2,f1,r1

Λ(f2, r2, f1, r1)

P (r1, r2)
, (A3)

where

ρ̄f2,r2,f1,r1
=

Ĵ [M̂f2,r2
M̂f1,r1

]ρ(0)

Λ(f2, r2|f1, r1)Λ(f1, r1)
(A4)

and we have complete freedom to choose any
Λ(f2, r2, f1, r1). As such we are not restricted to using
the undeterminable distribution P (f2, r2, f1, r1). This
implies that to unravel the conditional state conditioned
on some real record R in terms of fictitious results the
corresponding trajectories must be unnormalized.

In this paper we make two choices for
Λ(f2, r2, f1, r1). The first choice is Λ(f2, r2, f1, r1) =
Λ(f2)Λ(f1)Λ(r2)Λ(r1) where Λ(rk) and Λ(fk) are
Gaussian distributions of variance dt and mean
λ and µ respectively. The second choice is
Λ(f2, r2, f1, r1) = Λ(f2|f1, r1)Λ(f1)Λ(r2)Λ(r1) where
Λ(rk) is the same as before but the fictitious results
were chosen based on the true probability we would
expect based on the past real and fictitious results
up to but not including the current time. That is
µ =

√
γ2 Tr[x̂2ρ̄R,F(t)]/Tr[ρ̄R,F(t)].

A third possible choice would be Λ(f2, r2, f1, r1) =
Λ(f2|f1, r1)Λ(f1)Λ(r2|r1, f1)Λ(r1), where both the real
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FIG. 10: This figure shows a typical trajectory for a radia-
tively damped TLA undergoing homodyne-x detection of effi-
ciency 0.4 (solid line). The dotted line represents the solution
using our method whereas the dashed line represents the BG
method. Both our method and the BG method were imple-
mented using an ensemble size of 10000.
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FIG. 11: The top two plots show the difference between the
exact solution and the BG method for n = 1000 and 10000.
The bottom two plots show the difference between the exact
solution and our method for n = 1000 and 10000.

and fictitious distribution are chosen based on the
past results up to but not including the current time.
That is λ =

√
γ1 Tr[x̂1ρ̄R,F(t)]/Tr[ρ̄R,F(t)] and µ =√

γ2 Tr[x̂2ρ̄R,F(t)]/Tr[ρ̄R,F(t)]. This would seem the clos-
est choice to P (f2, r2, f1, r1) but it is important to note
that it is not the same. It is still an ostensible distri-
bution, because the true distribution is based upon the
entire measurement record, including results in the fu-
ture. Thus our trajectory equations will still be unnor-
malized and we cannot replace (r − λ)dt with dW (t) as
Tr[x̂1ρ̄R,F(t)]/Tr[ρ̄R,F(t)] is not equal to Tr[x̂1ρR(t)] for
all possible fictitious records. If we were to make this sub-
stitution we would generate normalized equations, but
averaging over all possible fictitious record would not give

a typical trajectory for the state conditioned on the par-
tial record R. This is precisely the mistake Brun and
Goan (BG) make in reference [20].

To be more specific let us consider their approach
and our approach for the following simple system: A
two level atom radiatively damped and monitored using
homodyne-x detection with an efficiency η. That is this
system is described by the SME

dρR(t) = dtD̂[σ̂]ρR +
√
η Ĥ[σ̂]ρRdW (t), (A5)

where r(t+ dt)dt = dW (t) + dt
√
η 〈σ̂x〉. Now using BG’s

theory we would extend this equation to

dρR,F(t) = dtD̂[σ̂]ρR,F +
√
η Ĥ[σ̂]ρR,FdW (t)

+
√

1 − η Ĥ[σ̂]ρR,FdW(t), (A6)

which has a pure state solution. Now they argue that
by ensemble averaging over the fictitious noise process
dW Eq. (A5) is recovered. However this is incorrect.
Although

EW [
√
η Ĥ[σ̂]ρR,FdW (t)] =

√
ηEW [Ĥ[σ̂]ρR,F]dW (t),

(A7)

the nonlinearity in the superoperator Ĥ means that

EW [Ĥ[σ̂]ρR,F] 6= Ĥ[σ̂]EW [ρR,F] = Ĥ[σ̂]ρR. (A8)

To see this explicitly we expand Eq. (A6) for two mea-
surement (two steps in time)

ρr1,r2,f1,f2
(2dt) =

ρ0 + dtD̂[σ̂]ρr1,f1
+
√
η Ĥ[σ̂]ρr1,f1

dW2(t) +
√

1 − η Ĥ[σ̂]ρr1,f1
dW2(t) + dtD̂[σ̂]ρ0 +

√
η Ĥ[σ̂]ρ0dW1(t) +

√

1 − η Ĥ[σ̂]ρ0dW1(t). (A9)

Looking at this equation we see that the problem term is

Ef1
[Ĥ[σ̂]ρr1,f1

] = Ef1
[σ̂ρr1,f1

+ ρr1,f1
σ̂

−Tr[σ̂xρr1,f1
]ρr1,f1

]

6= σ̂ρr1
+ ρr1

σ̂ − Tr[σ̂xρr1
]ρr1

(A10)

due to the non-linearity.
In our method this problem does not occur because

we use ostensible distributions and linear equations. For
this system the unnormalized state is

dρ̄R,F(t) = dtD̂[σ̂]ρ̄R,F +
√
η H̄λ[σ̂]ρ̄R,Fdt(r − λ) +

√

1 − η H̄µ[σ̂]ρ̄R,FdW(t), (A11)

where H̄χ[Â]ρ = Âρ+ ρÂ− χρ with χ being either λ or
µ. If we expand this to two measurements we find that
the problem term does not occur as

Ef1
[H̄[σ̂]ρ̄r1,f1

] = Ef1
[σ̂ρ̄r1,f1

+ ρ̄r1,f1
σ̂ − λρ̄r1,f1

]

= σ̂ρr1
+ ρr1

σ̂ − λρ̄r1
. (A12)

To show the magnitude of the error in BG’s ap-
proach we numerically solved the SME for η = 0.4 us-
ing Eq. (A5), BG’s method and our method. We first
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randomly generate and store a string of dW ’s, and use
these to generate the true record R via Eq. (A5). For
BG’s method we use this string of dW ’s, and generate an
ensemble using randomly generate strings of dWs. The
resultant solution would, according to BG, correspond to
the solution of Eq. (A5). For our method, we use the true
record R and again randomly generate strings of dWs to
obtain an ensemble average. The results of these simula-
tions are shown in Figs. 10 and 11. Here we see that BG

theory disagrees significantly with the exact result. Fur-
thermore this discrepancy cannot be a statistical error
as Fig. 11 shows that when the ensemble average is in-
creased this difference remains approximately constant.
That is, this simulation confirms that BG’s method fails
to reproduce a typical solution to Eq. (A5). By contrast
our method reproduces Eq. (A5) to within statistical er-
ror.
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