28,649 research outputs found

    Assessing Friction Characteristics of Liquid Lubricants

    Get PDF
    The decline of fossil fuel reserves and the increasing awareness of greenhouse gas emissions have been the primary driving forces behind the need to conserve energy. To improve fuel efficiency friction modifiers are commonly blended into lubricants. Reduction of friction will clearly lead to less energy requirements. However, an accurate evaluation of lubricant performance is not possible using existing test equipment. The main reason is that current test rigs require operating conditions that induce wear so that the measurement of friction in these rigs is not a real evaluation of friction. The paper will detail the design and commissioning of a purpose built test rig to measure frictional characteristics of various oils as well as the results of the tests performed

    Confluent operator algebras and the closability property

    Get PDF
    Certain operator algebras A on a Hilbert space have the property that every densely defined linear transformation commuting with A is closable. Such algebras are said to have the closability property. They are important in the study of the transitive algebra problem. More precisely, if A is a two-transitive algebra with the closability property, then A is dense in the algebra of all bounded operators, in the weak operator topology. In this paper we focus on algebras generated by a completely nonunitary contraction, and produce several new classes of algebras with the closability property. We show that this property follows from a certain strict cyclicity property, and we give very detailed information on the class of completely nonunitary contractions satisfying this property, as well as a stronger property which we call confluence.Comment: Preliminary versio

    Traffic scenario generation technique for piloted simulation studies

    Get PDF
    Piloted simulation studies of cockpit traffic display concepts require the development of representative traffic scenarios. With the exception of specific aircraft interaction issues, most research questions can be addressed using traffic scenarios consisting of prerecorded aircraft movements merged together to form a desired traffic pattern. Prerecorded traffic scenarios have distinct research advantages, allowing control of traffic encounters with repeatability of scenarios between different test subjects. A technique is described for generation of prerecorded jet transport traffic scenarios suitable for use in piloted simulation studies. Individual flight profiles for the aircraft in the scenario are created interactively with a computer program designed specifically for this purpose. The profiles are then time-correlated and merged into a complete scenario. This technique was used to create traffic scenarios for the Denver, Colorado area with operations centered at Stapleton International Airport. Traffic scenarios for other areas may also be created using this technique, with appropriate modifications made to the navigation fix locations contained in the flight profile generation program

    Audit of burns patients in the intensive care setting [poster]

    Get PDF
    No abstract available

    Crystallographic Analyses of Ion Channels: Lessons and Challenges

    Get PDF
    Membrane proteins fascinate at many levels, from their central functional roles in transport, energy transduction, and signal transduction processes to structural questions concerning how they fold and operate in the exotic environments of the membrane bilayer and the water-bilayer interface and to methodological issues associated with studying membrane proteins either in situ or extracted from the membrane. This interplay is beautifully exemplified by ion channels, a collection of integral membrane proteins that mediate the transmembrane passage of ions down their electrochemical potential gradient (for general reviews, see Refs. 1 and 2). Ion channels are key elements of signaling and sensing pathways, including nerve cell conduction, hormone response, and mechanosensation. The characteristic properties of ion channels reflect their conductance, ion selectivity, and gating. Ion channels are often specific for a particular type of ion (such as potassium or chloride) or a class of ions (such as anions) and are typically regulated by conformational switching of the protein structure between "open" and "closed" states. This conformational switching may be gated in response to changes in membrane potential, ligand binding, or application of mechanical forces. Detailed functional characterizations of channels and their gating mechanisms have been achieved, reflecting exquisite methodological advances such as patch clamp methods that can monitor the activities of individual channels (3). Until recently, corresponding information about the three-dimensional structures of channels was not available, reflecting difficulties in obtaining sufficient quantities of membrane proteins for crystallization trials. Happily, this situation has started to change with the structure determinations of the Streptomyces lividans K+ channel (KcsA (4)) and the Mycobacterium tuberculosis mechanosensitive channel (MscL (5)). A variety of reviews (6-12) have appeared recently that discuss functional implications of these channel structures. This review discusses these developments from a complementary perspective, by considering the implications of these structures from within the larger framework of membrane protein structure and function. Because of space restrictions, this review necessarily emphasizes membrane proteins that are composed primarily of alpha-helical bundles, such as KcsA and MscL, rather than beta-barrel proteins, such as porins, typically found in bacterial outer membranes

    5D Yang-Mills instantons from ABJM Monopoles

    Full text link
    In the presence of a background supergravity flux, N M2-branes will expand via the Myers effect into M5-branes wrapped on a fuzzy three-sphere. In previous work the fluctuations of the M2-branes were shown to be described by the five-dimensional Yang-Mills gauge theory associated to D4-branes. We show that the ABJM prescription for eleven-dimensional momentum in terms of magnetic flux lifts to an instanton flux of the effective five-dimensional Yang-Mills theory on the sphere, giving an M-theory interpretation for these instantons.Comment: 29 pages, Latex; v2: added references and a comment on the graviphoton coupling in section 5; v3: typos corrected and references adde

    Correction to the pathogenic alternative splicing, caused by the common GNB3 c.825C>T allele, using a novel, antisense morpholino

    Get PDF
    The very common GNB3 c.825C>T polymorphism (rs5443), is present in approximately half of all human chromosomes. Significantly the presence of the GNB3 825T allele has been strongly associated, with predisposition to essential hypertension. Paradoxically the presence of the GNB3 825T allele, in exon 10, introduces a pathogenic alternative RNA splice site into the middle of exon 9. To attempt to correct this pathogenic aberrant splicing, we therefore bioinformatically designed, using a Gene Tools® algorithm, a GNB3 specific, antisense morpholino. It was hoped that this morpholino would behave in vitro as either a potential “ splice blocker and/or exon skipper, to both bind and inhibit/reduce the aberrant splicing of the GNB3, 825T allele. On transfecting a human lymphoblast cell line homozygous for the 825T allele, with this antisense morpholino, we encouragingly observed both a significant reduction (from ~58% to ~5%) in the production of the aberrant smaller GNB3 transcript, and a subsequent increase in the normal GNB3 transcript (from ~42% to ~95%). Our results demonstrate the potential use of a GNB3 specific antisense morpholino, as a pharmacogenetic therapy for essential hypertension

    IPASS TECHNICAL MANUAL

    Get PDF
    Research Methods/ Statistical Methods,
    corecore