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Abstract

Certain operator algebras A on a Hilbert space have the property that every densely defined linear trans-
formation commuting with A is closable. Such algebras are said to have the closability property. They are
important in the study of the transitive algebra problem. More precisely, if A is a two-transitive algebra
with the closability property, then A is dense in the algebra of all bounded operators, in the weak operator
topology. In this paper we focus on algebras generated by a completely nonunitary contraction, and produce
several new classes of algebras with the closability property. We show that this property follows from a cer-
tain strict cyclicity property, and we give very detailed information on the class of completely nonunitary
contractions satisfying this property, as well as a stronger property which we call confluence.
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1. Introduction

Probably the best known problem in operator theory is the question of whether every bounded
linear operator on a complex, separable, infinite dimensional Hilbert space H has a nontrivial
invariant subspace. Despite considerable effort by many researchers for more than half a century,
the general problem remains open. A generalization, still unresolved, asks whether every transi-
tive algebra of operators must be dense in the weak operator topology. (Recall that an algebra is
said to be transitive if there is no common nontrivial invariant subspace for the operators in it.)

In the sixties, Arveson approached this problem iteratively, starting from an observation going
back essentially to von Neumann. Namely, assume that A is an algebra of operators on a Hilbert
space H, and n � 1 is an integer. The algebra A is said to be n-transitive if every invariant
subspace for

A(n) = {
X(n) = X ⊕ X ⊕ · · · ⊕ X︸ ︷︷ ︸

n times

: X ∈ A
}

is invariant for every operator of the form Y (n) where Y is an operator on H. Then A is dense, in
the weak operator topology, if and only if it is n-transitive for every n � 1. Arveson observed that
2-transitivity is equivalent to the following statement: every closed linear transformation com-
muting with A is a scalar multiple of the identity operator. For n � 3, n-transitivity is implied by
a similar statement for densely defined linear transformations commuting with A. Thus, provided
that every densely defined linear transformation commuting with A is closable, 2-transitivity im-
plies n-transitivity for all n. As a consequence, Arveson was able to prove that transitive algebras
containing certain kinds of subalgebras are indeed dense in the weak operator topology. His re-
sults apply to algebras on an L2-space, containing the algebra L∞ of all bounded measurable
multipliers, and to algebras on the Hardy space H 2(D), containing the algebra H∞(D). A few
similar results were obtained by others for closely related algebras in the following years; see for
instance [19, Chapter 8].

A year ago, Haskell Rosenthal became interested in the question of which algebras of opera-
tors on Hilbert space had what he called the closability property which means that every densely
defined linear transformation in its commutant is closable. A key step in Arveson’s proofs was
to show that the algebras L∞ acting on L2, and H∞(D) acting on H 2(D), have the closabil-
ity property. Rosenthal showed that various algebras have the closability property and asked the
authors a specific followup question. In finding the answer, the question piqued our interest and
resulted in a series of questions related to this topic. Our investigation took us in some unexpected
directions, making surprising connections with other topics in operator theory.

After some preliminaries in Section 2, we begin in Section 3 by investigating the closability
property and determining some algebras which have it, as well as some that do not. In Section 4
we introduce the concept of a rationally strictly cyclic vector, and show that the existence of such
a vector for a commutative algebra A implies the closability property. In Section 5 we discuss
the invariance of the closability property, and of the existence of rationally strictly cyclic vectors,
under an appropriate notion of quasisimilarity. We deduce, for instance, that the commutant of
any contraction of class C0 has the closability property. In the course of our study, the importance
of something like a functional calculus for quotients became clear. To make this idea precise, in
Section 6 we study the related notion of confluence (introduced in Section 4) as it applies to the
algebra obtained by applying the H∞ functional calculus to a completely nonunitary contraction.
Confluence implies the existence of a rationally strictly cyclic vector, and therefore the closability
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property as well. Section 7 contains a thorough study of confluence in the context of functional
models for contractions. In particular, a characterization is obtained for those contractions which
are quasisimilar to the unilateral shift of multiplicity one. This characterization involves the ‘size’
of the analytic functions in the reproducing kernel representative for the operator.

The analysis of confluence is somewhat subtle and rests on the harmonic analysis of contrac-
tions [23], the theory of the class C0 [4], the theory of dual algebras [5], and results about the
class B1(D) [10].

We thank Haskell Rosenthal for the questions which led to this research. We are also grateful
to the referee, who pointed out several errors and numerous misprints in our original manuscript.

2. Preliminaries

We will work with operators on Hilbert spaces over the complex numbers C. The algebra of
bounded linear operators on a Hilbert space H is denoted L(H). Given T ∈ L(H), PT denotes
the smallest unital algebra containing T ; that is, the set of all polynomials in T . The closure of
PT in the weak operator topology (also known as WOT) is denoted WT . The norm closure of
a subset M ⊂ H is denoted M. The orthogonal projection of H onto a closed linear subspace
M ⊂ H is denoted PM.

Several special operators play an important role. The space L2 is the space of functions defined
on the unit circle T which are square integrable relative to arclength measure. The bilateral shift
U ∈ L(L2) is the unitary operator defined by (Uf )(ζ ) = ζf (ζ ) for f ∈ L2 and a.e. ζ ∈ T. The
Hardy space H 2 ⊂ L2 is the cyclic subspace for U generated by the constant function 1, and
S ∈ L(H 2) is the unilateral shift of multiplicity 1 defined as S = U | H 2. More generally, denote
by H∞ = H∞(D), the algebra of bounded analytic functions in the unit disk D. For each u ∈ H∞
one defines an analytic Toeplitz operator Tu ∈ L(H 2) as the operator of pointwise multiplication
by u. Here one takes advantage of the fact that functions in H∞ have a.e. defined radial limits
on T.

Given a subset A ⊂ L(H), A′ denotes the set of operators commuting with every element
of A. The set A′ is called the commutant of A, and it is a unital algebra, closed in the weak
operator topology. An important example is

{S}′ = WS = {
Tu: u ∈ H∞}

.

A function m ∈ H∞ is inner if |m(ζ)| = 1 for a.e. ζ ∈ T. For every inner function m ∈ H∞,
the space mH 2 = TmH 2 is closed and invariant for S. The compression of S to H(m) =
H 2 � mH 2 is denoted S(m). In other words, S(m) = PH(m)S | H(m) or, equivalently, S(m)∗ =
S∗ | H(m). Another important example of a commutant is

{
S(m)∗

}′ = WS(m)∗ = {
T ∗

u

∣∣ H(m): u ∈ H∞}
.

This was proved by Sarason [20].
An operator T ∈ L(H) is a contraction if ‖T ‖ � 1. A contraction T is completely nonunitary

if it has no invariant subspace on which it acts as a unitary operator. For completely nonuni-
tary contractions T , there is a homomorphism u 
→ u(T ) ∈ L(H) which extends the polynomial
functional calculus to functions u ∈ H∞. This is called the Sz.-Nagy–Foias functional calculus.
For instance, u(S) = Tu, and u(S(m)) = PH(m)Tu | H(m).
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A completely nonunitary contraction T ∈ L(H) is of class C0 if u(T ) = 0 for some u ∈
H∞ \ {0}. The ideal {u ∈ H∞: u(T ) = 0} ⊂ H∞ is principal, and it is generated by an inner
function, uniquely determined up to a constant factor of absolute value 1. This function is called
the minimal function of T . The most basic example is S(m), whose minimal function is m.

We refer the reader to [23] for further background on the analysis of contractions, to [5] for
dual algebras, and to [4] for the class C0. We will refer as needed to these and other original
sources for specific results.

3. The closability property

Consider a unital subalgebra A of the algebra L(H) of bounded operators on the complex
Hilbert space H. The algebra A is not assumed to be norm closed.

Definition 3.1. A linear transformation X : D(X) → H is said to commute with A if for every
h ∈ D(X) and every T ∈ A we have T h ∈ D(X) and

XT h = T Xh.

We define now the main concept we study in this paper.

Definition 3.2. The algebra A is said to have the closability property if every linear transforma-
tion X which commutes with A, and whose domain D(X) is dense in H, is closable.

We recall that a linear transformation X is closable if the closure of its graph

G(X) = {
h ⊕ Xh: h ∈ D(X)

}

is again the graph of a linear transformation, usually denoted X and called the closure of X.
Equivalently, X is closable if given a sequence hn ∈ D(X) such that limn→∞ ‖hn‖ = 0 and the
limit k = limn→∞ Xhn exists, it follows that k = 0.

The following observation is a trivial consequence of the fact that a linear transformation
commuting with an algebra also commutes with smaller algebras.

Lemma 3.3. Assume that A ⊂ B ⊂ L(H) are unital algebras. If A has the closability property
then so does B. In particular, if A is commutative and has the closability property, then its
commutant A′ also has the closability property.

We start with some examples of algebras which do not have the closability property. The
arguments are based on the following simple fact.

Lemma 3.4. Let A be a unital subalgebra of L(H). Assume that there exist linear manifolds
M, N ⊂ H such that

(1) T M ⊂ M and T N ⊂ N for every T ∈ A;
(2) M ∩ N = {0} and M + N = H;
(3) M ∩ N = {0}.

Then A does not have the closability property.
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Proof. Define a linear transformation with domain D(X) = M + N by setting Xh = 0 for
h ∈ M and Xh = h for h ∈ N . If X were closable, its closure would satisfy Xh = 0 and Xh = h

for any h ∈ M ∩ N , and this is absurd for h = 0. �
Proposition 3.5. The following algebras do not have the closability property:

(1) The algebra PS generated by the unilateral shift S.
(2) The algebra PS(m), where m is an inner function which is not a finite Blaschke product.
(3) The WOT-closed algebra WS∗ .
(4) The WOT-closed algebra WU generated by the bilateral shift U on L2.
(5) Any algebra of the form A ⊗ IK , where A ⊂ L(H) is a unital algebra, and K is an infinite

dimensional Hilbert space.

Proof. For the first example, choose an outer function f ∈ H 2 which is not rational, and define
M to consist of all polynomials and N = {pf : p a polynomial}. The hypotheses of Lemma 3.4
are verified trivially since both of these spaces are dense in H 2.

Next, assume that m is an inner function but not a finite Blaschke product, and consider
a factorization m = m1m2 such that the inner functions mj are not finite Blaschke products.
We can define then subspaces M, N ⊂ H(m) by M = {PH(m)p: p a polynomial} and N =
{PH(m)(pm2): p a polynomial}. The space M is dense in H(m), so to verify the hypotheses of
Lemma 3.4 it suffices to show that M ∩ N = {0}. Consider indeed two polynomials p,q such
that PH(m)p = PH(m)(qm2). In other words, we have p = qm2 + rm1m2 for some r ∈ H 2. If
p = 0, this equality implies that the inner factor of p (obviously a finite Blaschke product) is
divisible by m2, contrary to our choice of factors.

For example (3), we choose M = {p: p a polynomial} ⊂ H 2, and we denote by N the linear
manifold generated by the functions kλ(z) = (1 − λz)−1, λ ∈ D \ {0}. These spaces are dense
in H 2, and the identities

(
S∗p

)
(z) = p(z) − p(0)

z
, S∗kλ = λkλ

easily imply that they are invariant under WS∗ . Finally, a function p in their intersection must be
both a polynomial, and a rational function vanishing at ∞, hence p = 0.

For example (4), define two sets ω± = {e±it : 0 < t < 3π/2} ⊂ T, denote by χ± their charac-
teristic functions, and set M = χ+H 2 and N = χ−H 2. Since M = χ+L2 and N = χ−L2, we
clearly have M + N = L2 and M ∩ N = χω+∩ω−L2. The fact that M ∩ N = {0} follows easily
from the F. and M. Riesz theorem.

Finally, assume that K is an infinite dimensional Hilbert space, and let M0, N0 ⊂ K be two
dense linear manifolds such that M0 ∩ N0 = {0}. Then M = H ⊗ M0 and N = H ⊗ N0 will
satisfy the hypotheses of Lemma 3.4 for the algebra A ⊗ IK . �

The first two examples above indicate that an algebra with the closability property must be
reasonably large, while the last one shows that it should not have uniform infinite multiplicity.
In this paper we will focus on algebras which have multiplicity one. The first example of an al-
gebra with the closability property was of this kind: any maximal abelian selfadjoint subalgebra
of L(H) has the closability property, as shown in [3]. This, along with the examples described
in Proposition 3.7 (the first of which also appeared in [3], while the second was proved indepen-
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dently in [21]), will be treated in a unified manner in Section 4. The proofs of these particular
cases do in fact suggest the more general methods.

First, a useful observation about bounded outer functions. This is certainly known, but we
could not find a reference. We use the notation ‖u‖2 for the norm of a function u ∈ L2.

Lemma 3.6. Let v ∈ H∞ be an outer function. There exist outer functions (wn)
∞
n=1 ⊂ H∞ with

the property that limn→∞ ‖u − wnvu‖2 = 0 for every u ∈ L2. In particular, if T is a completely
nonunitary contraction, the sequence (wn(T )v(T ))∞n=1 converges to I in the strong operator
topology.

Proof. The functions wn will be specified by the requirements that (wnv)(0) > 0, and

∣∣(wnv)(ζ )
∣∣=

{
1 if |v(ζ )| � 1/n,

|v(ζ )| if |v(ζ )| < 1/n

for a.e. ζ ∈ T, so that ‖wn‖∞ � n. Observe that

(wnv)(0) = 1

2π

∫
|v(ζ )|<1/n

log
∣∣v(ζ )

∣∣ |dζ | → 1

as n → ∞, and it follows easily that (wnv)(λ) → 1 uniformly on every compact subset of D.
This also implies that wnv → 1 in the weak* topology of H∞ (given by its duality with L1/H 1

0 ).
Fix now u ∈ L2 of unit norm, and use this weak convergence to deduce that

lim sup
n→∞

‖u − wnvu‖2
2 = lim sup

n→∞
‖wnvu‖2

2 − 2 Re lim
n→∞

1

2π

2π∫
0

wnv|u|2 |dζ | + 1 � 0,

= lim sup
n→∞

‖wnvu‖2
2 − 1 � 0.

The lemma follows. �
Proposition 3.7. The algebras WS and WS(m) have the closability property.

Proof. Recall first that every function in H 2 is the quotient of two bounded functions in H∞.
For instance, given a nonzero function f ∈ H 2, denote by vf the unique outer function defined
by the requirements that vf (0) > 0 and

∣∣vf (ζ )
∣∣= min

{
1,

1

|f (ζ )|
}

for almost every ζ ∈ T. The functions vf and uf = f vf belong to H∞, and in fact

∣∣uf (ζ )
∣∣= min

{
1,
∣∣f (ζ )

∣∣} a.e. ζ ∈ T. (3.1)
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Consider first the algebra WS which consists precisely of the analytic Toeplitz operators Tu

with u ∈ H∞. Let X be a densely defined linear transformation commuting with this algebra,
and let f,g ∈ D(X). Observe first that uf = vf f = Tvf

f ∈ D(X), and therefore we can write

vguf Xg = Tvguf
Xg = XTvguf

g = X(vguf g) = X(uf ug)

= XTuguf = TugXuf = ugXuf .

Let now gn ∈ D(X) be a sequence converging to zero such that the limit h = limn→∞ Xgn exists.
Passing if necessary to a subsequence, we may assume that gn(ζ ) → 0 for almost every ζ ∈ T.
By virtue of (3.1) we also have |vgn(ζ )| → 1 and ugn(ζ ) → 0 for a.e. ζ , and therefore

‖ugnXuf ‖2
2 = 1

2π

2π∫
0

∣∣ugn

(
eit
)∣∣2∣∣(Xuf )

(
eit
)∣∣2 dt → 0

as n → ∞ by the dominated convergence theorem. The identity

vgnuf Xgn = ugnXuf

proved earlier, along with the fact that |vgn | → 1 a.e., implies that uf h = 0 for every f ∈ D(X).
Choosing a function f which is not identically zero, we deduce that h = 0, thus proving that X

is closable.
Consider now an inner function m, and define a map J : H(m) → H(m) by setting

(Jf )(ζ ) = ζf (ζ )m(ζ ), ζ ∈ T. (3.2)

This is a conjugate linear surjective isometry on H(m) satisfying the equation JS(m) = S(m)∗J .
More generally, we have the identity

JA = A∗J, A ∈ WS(m).

This identity is easily verified when A is a polynomial in S(m), and it extends to arbitrary A

using the continuity properties of the functional calculus with H∞ functions.
Let us denote by ξ = 1 − m(0)m ∈ H(m) the projection of 1 onto H(m). This is a separating

vector for H(m). That is, the equality Aξ = 0 implies A = 0 for A ∈ H(m). Indeed, if A =
u(S(m)), we have Aξ = PH(m)u, and this function is zero if and only if u divides m, in which
case u(S(m)) = 0.

Consider now a densely defined linear transformation X commuting with WS(m). We will
show that X is closable by proving the identity

〈Xh1, Jh2〉 = 〈h1, JXh2〉, h1, h2 ∈ D(X),

which shows that JX ⊂ X∗J , and hence X∗ is densely defined. Indeed, fix h1, h2 ∈ D(X), and
choose an outer function v ∈ H∞ such that the functions

a1 = vh1, a2 = vh2, b1 = vXh1, b2 = vXh2
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are bounded. Set V = v(S(m)), Aj = aj (S(m)), Bj = bj (S(m)) so that V hj = Ajξ and
V Xhj = Bjξ for j = 1,2. Observe first that

A1B2ξ = A1V Xh2 = XA1V h2 = XA1A2ξ,

and a similar calculation shows that A1B2ξ = A2B1ξ . We conclude that A1B2 = A2B1 because
ξ is separating. Next we use Lemma 3.6 to find operators Wn ∈ WS(m) such that WnV converges
to I in the strong operator topology. We have then

〈Xh1, Jh2〉 = lim
n→∞〈WnV Xh1, JWnV h2〉

= lim
n→∞〈WnB1ξ, JWnA2ξ 〉

= lim
n→∞

〈
Wnξ,B∗

1 JWnA2ξ
〉

= lim
n→∞〈Wnξ,JWnB1A2ξ 〉

= lim
n→∞〈Wnξ,JWnA1B2ξ 〉

= lim
n→∞

〈
Wnξ,A∗

1JWnB2ξ
〉

= lim
n→∞〈WnA1ξ, JWnB2ξ 〉 = 〈h1, JXh2〉,

where we used the identity A1B2 = A2B1 and the fact that Wn commutes with Aj and Bj . The
theorem is proved. �

Note incidentally that the example of WS shows that closability of an algebra A is not gener-
ally inherited by the algebra {T ∗: T ∈ A}.

We conclude this section with a simple fact which will be used in the study of closability for
quasisimilar algebras. Let Ai ⊂ L(Hi ), i ∈ I , be algebras. The algebra

⊕
i∈I Ai ⊂ L(

⊕
i∈I Hi )

consists of those operators of the form
⊕

i∈I Ti , where Ti ∈ Ai for each i, and sup{‖Ti‖:
i ∈ I } < ∞.

Lemma 3.8. A direct sum A = ⊕
i∈I Ai has the closability property if and only if Ai has this

property for every i ∈ I .

Proof. Assume first that A has the closability property, and Xi0 is a densely defined linear
transformation on Hi0 commuting with Ai0 for some i0 ∈ I . We define a linear transforma-
tion X with dense domain D(X) = ⊕

i∈I Di , where Di0 = D(Xi0), Di = Hi for i = i0, and
X(

⊕
hi) = ⊕

ki , where ki0 = Xi0hi0 and ki = 0 for i = i0. The linear transformation X com-
mutes with A, hence it is closable. It follows that Xi0 must be closable as well. Conversely,
assume that each Ai has the closability property, and let X be a densely defined linear transfor-
mation commuting with A. If Pj ∈ A denotes the orthogonal projection onto the j th component
of
⊕

i∈I Hi , we have then PjX ⊂ XPj , and the linear transformation Xj : Dj = Pj D(X) → Hj

defined by Xj = X | Dj commutes with Aj . It follows that each Xj is closable, and then it is
easy to verify that X is closable as well. �
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4. Rationally strictly cyclic vectors and confluence

The examples in Proposition 3.7, as well as maximal abelian selfadjoint subalgebras (also
known as masas), can actually be treated in a unified manner. For this purpose we need a new
concept.

Definition 4.1. Let A ⊂ L(H) be a unital algebra. A vector h0 ∈ H is called a rationally strictly
cyclic vector for A if for every h ∈ H there exist A,B ∈ A such that Bh = Ah0 and kerB = {0}.

Recall that h0 is said to be strictly cyclic for A if Ah0 = H. Thus, a strictly cyclic vector is
rationally strictly cyclic, but not conversely. The examples considered in this paper do not have
strictly cyclic vectors except in trivial cases.

Lemma 4.2. The following algebras have rationally strictly cyclic vectors:

(1) WS .
(2) WS(m).
(3) Any masa on a separable Hilbert space. More generally, any masa with a cyclic vector.

Proof. The vector 1 ∈ H 2 is rationally strictly cyclic for WS , while 1 − m(0)m = PH(m)1 is
rationally strictly cyclic for WS(m). For (3), we may assume that H = L2(μ), where μ is a Borel
probability measure on some compact topological space, and A = {Mu: u ∈ L∞(μ)}, where

Muf = uf, u ∈ L∞(μ), f ∈ L2(μ).

Since every function in L2(μ) is the quotient of two bounded functions, the constant function 1
is rationally strictly cyclic for A. �

Here are two useful properties of algebras with rationally strictly cyclic vectors.

Lemma 4.3. Let A ⊂ L(H) be a unital algebra with a rationally strictly cyclic vector h0.

(1) If T ∈ A′ \ {0} then T h0 = 0.
(2) If A is commutative and D ⊂ H is a dense linear manifold, invariant for A, then

⋂
{kerT : T ∈ A, T h0 ∈ D} = {0}.

Proof. Assume that T ∈ A′ and T h0 = 0. Given x ∈ H, choose Ax,Bx ∈ A such that Bxx =
Axh0 and kerBx = {0}. We have then

BxT x = T Bxx = T Axh0 = AxT h0 = 0,

and therefore T x = 0. This implies that T = 0 since x is arbitrary.
Assume now that A is commutative and D ⊂ H is a dense linear manifold, invariant for A.

Let h ∈ H be a vector such that Ah = 0 whenever A ∈ A and Ah0 ∈ D. Using the notation above,
we have Axh0 = Bxx ∈ D whenever x ∈ D, and therefore Axh = 0 for x ∈ D. Thus



H. Bercovici et al. / Journal of Functional Analysis 258 (2010) 4122–4153 4131
0 = BhAxh = AxBhh = AxAhh0 = AhAxh0

= AhBxx = BxAhx

for x ∈ D, which implies Ahx = 0 for such vectors x. From the density of D we deduce that
Ah = 0, and thus Bhh = Ahh0 = 0 and h = 0, as desired. �

We can now prove a generalization of Proposition 3.7.

Theorem 4.4. Any unital commutative algebra A ⊂ L(H) which has a rationally strictly cyclic
vector has the closability property.

Proof. Let h0 ∈ H be a rationally strictly cyclic vector for the algebra A, and let X be a linear
transformation with dense domain D(X) commuting with A. Consider a sequence {xn} ⊂ D(X)

such that xn → 0 and Xxn → h as n → ∞. By Lemma 4.3(2), it will suffice to show that
T h = 0 whenever T ∈ A and T h0 ∈ D(X). Fix such an operator T , and choose operators An,Bn,

B,A ∈ A satisfying Bnxn = Anh0, BXT h0 = Ah0 and kerBn = kerB = {0} for all n � 1. Using
the commutativity of A, and the fact that X commutes with A we deduce that

Bn(BT Xxn − Axn) = BT XBnxn − ABnxn

= BT XAnh0 − AAnh0

= BXAnT h0 − AAnh0

= An(BXT h0 − Ah0) = 0.

Since Bn is one-to-one, we have

BT Xxn = Axn.

Letting n → ∞ we obtain BT h = 0 and hence T h = 0, as desired. �
Observe that if an algebra B ⊂ L(H) contains a unital commutative algebra A with the clos-

ability property, then B also has the closability property. Therefore Theorem 4.4 and the result
of Arveson mentioned in the introduction have the following consequence.

Corollary 4.5. There exists no proper subalgebra of L(H) which is 2-transitive, closed in the
strong operator topology and contains a unital commutative subalgebra with a rationally strictly
cyclic vector.

The calculations in the preceding proof can be used to relate closed, densely defined linear
transformations commuting with A with linear transformations of the form B−1A with A,B ∈ A
and kerB = {0}. Note that

G
(
B−1A

)= {h ⊕ k ∈ H ⊕ H: Ah = Bk},
and this is generally larger than

G
(
AB−1)= {Bh ⊕ Ah: h ∈ H}.
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Also observe that two linear transformations of this form, say B−1A,B−1
1 A1, which agree on a

dense linear manifold D, must in fact be equal. Indeed, the equality on D implies that BA1h =
B1Ah for h ∈ D, and therefore B1A = BA1. Thus for h ⊕ k ∈ G(B−1A) we have

B(B1k − A1h) = B1(Bk − Ah) = 0,

and hence h ⊕ k ∈ G(B−1
1 A1) because B is injective.

Proposition 4.6. Let A be a commutative algebra with a rationally strictly cyclic vector h0. For
every densely defined linear transformation X commuting with A such that h0 ∈ D(X), there
exist A,B ∈ A such that kerB = {0} and X ⊂ B−1A. If X ∈ L(H), we have X = B−1A. In
particular, the commutant A′ is a commutative algebra.

Proof. As in the preceding proof, we choose for each h ∈ H operators Ah,Bh ∈ A such that
kerBh = {0} and Bhh = Ahh0. Assume now that h0 ∈ D(X) and X commutes with A. We have
then for h ∈ D(X),

BhBXh0Xh = BXh0XBhh = BXh0XAhh0

= AhBXh0Xh0 = AhAXh0h0

= AXh0Bhh = BhAXh0h,

from which we conclude that X ⊂ B−1
Xh0

AXh0 because Bh is injective. The remaining assertions
follow easily from this. �

Sometimes an algebra with a rationally strictly cyclic vector has the stronger property defined
below.

Definition 4.7. Let A ⊂ L(H) be a unital algebra. We will say that A is confluent if for every
two vectors h1, h2 ∈ H \ {0} there exist injective operators B1,B2 ∈ A such that B1h1 = B2h2.

Proposition 4.8. For a commutative unital algebra A ⊂ L(H), the following two assertions are
equivalent:

(1) A has a rationally strictly cyclic vector and kerB = {0} for every B ∈ A \ {0};
(2) A is confluent.

If these equivalent conditions are satisfied, then every nonzero vector is rationally strictly cyclic
for A; moreover, every densely defined linear transformation commuting with A is contained in
B−1A for some A,B ∈ A such that kerB = {0}.

Proof. Assume first that (1) holds, and h1, h2 ∈ H \ {0}. With the notation used earlier, we have

Ah2Bh1h1 = Ah2Ah1h0 = Ah1Bh2h2.

The operators Ah ,Ah are not zero, and therefore Ah Bh ,Ah Bh are injective by hypothesis.
1 2 2 1 1 2
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Conversely, assume that A is confluent. Clearly, every nonzero vector is then rationally strictly
cyclic. It remains to show that every B ∈ A \{0} is injective. Assume to the contrary that Bh1 = 0
for some h1 = 0, and choose h2 /∈ kerB . If B1,B2 are as in Definition 4.7, we obtain

0 = B1Bh1 = BB1h1 = BB2h2 = B2Bh2.

This implies Bh2 = 0, contrary to the choice of h2. The last assertion follows from Proposi-
tion 4.6. �

As an application of the results in this section, we show that some other algebras of Toeplitz
operators have the closability property. Consider a bounded, connected open set Ω ⊂ C bounded
by n + 1 analytic simple Jordan curves, and fix a point ω0 ∈ Ω . The algebra H∞(Ω) consists of
the bounded analytic functions on Ω , while H 2

ω0
(Ω) is defined as the space of analytic functions

f on Ω with the property that |f |2 has a harmonic majorant in Ω . The norm on H 2
ω0

(Ω) is
defined as

‖f ‖2
2 = inf

{
u(ω0): u a harmonic majorant of |f |2}, f ∈ H 2

ω0
(Ω).

Multiplication by a function u ∈ H∞(Ω) determines a bounded operator Tu on H 2
ω0

(Ω).

Proposition 4.9. The constant function 1 ∈ H 2
ω0

(Ω) is a rationally strictly cyclic vector for the
algebra {Tu: u ∈ H∞(Ω)}. In particular, this algebra has the closability property.

The statement is equivalent to the following result. We refer to [1] and [13] for the function
theoretical background.

Lemma 4.10. For every function f ∈ H 2
ω0

(Ω) there exist u,v ∈ H∞(Ω) such that v ≡ 0 and
vf = u.

Proof. Denote by π : D → Ω a (universal) covering map such that π(0) = ω0, and denote by
Γ the corresponding group of deck transformations. Thus, Γ consists of those analytic auto-
morphisms ϕ of D with the property that π ◦ ϕ = π . The map f 
→ f ◦ π is an isometry from
H 2

ω0
(Ω) onto the space of those functions g ∈ H 2 such that g ◦ ϕ = g for every ϕ ∈ Γ .

Fix now f ∈ H 2
ω0

(Ω) \ {0}, and construct an outer function w ∈ H 2 such that |w(ζ )| =
min{1,1/|f ◦ π(ζ )|} for almost every ζ ∈ T. The function w is obviously modulus automorphic
in the sense that |w ◦ ϕ| = |w| for every ϕ ∈ Γ . It follows that there is a group homomor-
phism γ : Γ → T such that w ◦ ϕ = γ (ϕ)w for every ϕ ∈ Γ . Choose a modulus automorphic
Blaschke product b ∈ H∞ such that b ◦ ϕ = γ (ϕ)b for γ ∈ Γ ; see [13, Theorem 5.6.1] for the
construction of such products. Then there exist functions u,v ∈ H∞(Ω) such that v ◦ π = bw

and u ◦ π = bw(f ◦ π). These functions satisfy the requirements of the lemma. �
5. Quasisimilar algebras

We will now study the effect of quasisimilarity on the closability property and the existence of
rationally strictly cyclic vectors. Recall that an operator Q ∈ L(H1, H2) is called a quasiaffinity
if it is injective and has dense range.
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Definition 5.1. An algebra A1 ⊂ L(H1) is a quasiaffine transform of an algebra A2 ⊂ L(H2) if
there exists a quasiaffinity Q ∈ L(H1, H2) such that for every T2 ∈ A2, we have QT1 = T2Q for
some T1 ∈ A1. We write A1 ≺ A2 if A1 is a quasiaffine transform of A2.

The relation A1 ≺ A2 can simply be written as Q−1 A2Q ⊂ A1 for some quasiaffinity Q.

Proposition 5.2. Assume that A1 ⊂ L(H1) and A2 ⊂ L(H2) are unital algebras such that
A1 ≺ A2. Then

(1) If A1 is commutative, then A2 is commutative as well.
(2) If A2 has the closability property, then so does A1.
(3) If A2 is confluent, then so is A1.

Proof. Let Q be as in Definition 5.1. Since the map T 
→ Q−1T Q is obviously an injective
algebra homomorphism on A2, part (1) is immediate.

To prove (2), let X be a densely defined linear transformation commuting with A1. Define
the linear transformation Y = QXQ−1 on the dense subspace D(Y ) = QD(X). Since all the
operators T2 ∈ A2 have the property that Q−1T2Q is in A1, it follows easily that Y commutes
with A2. Assume now that A2 has the closability property, so that Y is closable. We will verify
that X is closable as well. Assume that hn ∈ D(X) are such that hn → 0 and Xhn → k as
n → ∞. Obviously then D(Y ) � Qhn → 0 and YQhn → Qk. We deduce that Qk = 0, and
therefore k = 0 since Q is a quasiaffinity.

Finally, assume that A2 is confluent and let h1, h2 ∈ H1 \ {0}. We choose injective
C1,C2 ∈ A2 so that C1Qh1 = C2Qh2, and observe that B1h1 = B2h2, where Bj = Q−1CjQ ∈

A1 are injective. �
Definition 5.3. An algebra A1 ⊂ L(H1) is quasisimilar to an algebra A2 ⊂ L(H2) if there exist
quasiaffinities Q ∈ L(H1, H2) and R ∈ L(H2, H1) such that Q−1 A2Q ⊂ A1, R−1 A1R ⊂ A2,
QR ∈ A′

2, and RQ ∈ A′
1. We write A1 ∼ A2 if A1 is quasisimilar to A2.

Using the proofs of parts (1) and (2) of the following result, it is easy to see that quasisimilarity
is an equivalence relation.

Proposition 5.4. Assume that A1 and A2 are commutative quasisimilar algebras, and Q,R

satisfy the conditions of Definition 5.3. Then

(1) We have Q−1 A2Q = A1 and R−1 A1R = A2.
(2) The maps T2 
→ Q−1T2Q and T1 
→ R−1T1R are mutually inverse algebra isomorphisms

between A1 and A2.
(3) The commutant A′

1 is commutative if and only if A′
2 is commutative.

(4) If h1 ∈ H1 is rationally strictly cyclic for A1 then Qh1 is rationally strictly cyclic for A2.
(5) The algebra A1 is confluent if and only if A2 is confluent.
(6) The algebra A′

1 is confluent if and only if A′
2 is confluent.

(7) The algebra A′
1 has the closability property if and only if A′

2 does.
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Proof. Define Φ : A2 → A1 and Ψ : A1 → A2 by setting Φ(T2) = Q−1T2Q and Ψ (T1) =
R−1T1R. We have

Ψ
(
Φ(T2)

)= R−1Q−1T2QR = R−1Q−1QRT2 = T2, T2 ∈ A2,

and similarly Φ(Ψ (T1)) = T1 for T1 ∈ A1. This proves (2), and (1) follows from (2).
Assume now that A′

1 is commutative and A,B ∈ A′
2. We claim that RAQ and RBQ belong

to A′
1. Indeed,

T1RAQ = R
(
R−1T1R

)
AQ = RA

(
R−1T1R

)
Q

= RAR−1T1(RQ) = RAR−1(RQ)T1 = RAQT1

for T1 ∈ A1. We deduce that RAQRBQ = RBQRAQ and hence AQRB = BQRA. Taking
A or B to be the identity operator, we deduce that QR commutes with B and A, and therefore
QRAB = QRBA, and finally the desired equality AB = BA.

To prove (4), assume that h1 is rationally strictly cyclic for A1. Proposition 4.6 implies the
existence of A1,B1 ∈ A1 such that kerB1 = {0} and RQ = B−1

1 A1. Set A2 = R−1A1R,B2 =
R−1B1R ∈ A2, and observe that

B2QR = R−1(B1RQ)R = R−1A1R = A2,

that is QR = B−1
2 A2. Since QR is a quasiaffinity, it follows that kerA2 = {0}. To show that

Qh1 is rationally strictly cyclic for A2, fix a vector h2 ∈ H2, and choose S1, T1 ∈ A1 such
that kerT1 = {0} and T1Rh2 = S1h1. Set now T2 = R−1T1R,S2 = R−1S1R ∈ A2, and note that
kerT2 = {0}. We have

RQRT2h2 = RQT1Rh2 = RQS1h1 = S1RQh1 = RS2Qh1,

so that QRT2h2 = S2Qh1. Applying B2 to both sides we obtain A2T2h2 = B2S2Qh1, and strict
cyclicity follows because A2T2,B2S2 ∈ A2 and ker(A2T2) = {0}.

Assertion (5) follows easily from (4) and Proposition 4.8, or directly from Proposition 5.2(3).
Assume now that A′

1 is confluent, and let h, k ∈ H2 be two nonzero vectors. Then there exist
injective operators A1,B1 ∈ A′

1 such that A1Rh = B1Rk. Thus we have A2h = B2k, where
A2 = QA1R and B2 = QB1R are injective operators in A′

2. This proves (6).
Finally, assume that A′

2 has the closability property, and let X be a densely defined linear
transformation commuting with A′

1. As in the proof of Proposition 5.2(2), to prove (7) it will
suffice to show that the linear transformation Y0 = QXQ−1 defined on the dense space D(Y0) =
QD(X) is closable. To show this, we will define a linear transformation Y ⊃ Y0 which commutes
with A′

2. Its domain D(Y ) consists of all the finite sums of the form
∑

n TnQhn, where Tn ∈ A′
2

and hn ∈ D(X), and

Y
∑

TnQhn =
∑

TnQXhn.
n n
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To show that Y is well defined, it will suffice to prove that
∑

n TnQhn = 0 implies
R
∑

n TnQXhn = 0. Indeed, since RTnQ ∈ A′
1, we have RTnQhn ∈ D(X) and

∑
n

RTnQXhn =
∑
n

XRTnQhn = XR
∑
n

TnQhn = 0.

The fact that Y commutes with every T ∈ A′
2 is easily verified. If

∑
n TnQhn ∈ D(Y ) then clearly∑

n T TnQhn ∈ D(Y ), and

YT
∑
n

TnQh =
∑
n

T TnQXhn = T Y
∑
n

TnQhn.

The inclusion Y ⊃ Y0 is obvious since A′
2 is unital. �

We will be using the results in this section for the special case of algebras generated by a
completely nonunitary contraction T ∈ L(H). For such a contraction we will write

H∞(T ) = {
u(T ): u ∈ H∞}

.

Parts (1) and (2) of the following lemma are easily verified; in fact Definition 5.3 was formu-
lated so as to make part (2) correct.

Lemma 5.5. Let T1 and T2 be two completely nonunitary contractions.

(1) If T1 ≺ T2 then H∞(T1) ≺ H∞(T2).

(2) If T1 ∼ T2 then H∞(T1) ∼ H∞(T2).
(3) If H∞(T1) ∼ H∞(T2) and T1 is of class C0, then T2 is also of class C0.
(4) If H∞(T1) ∼ H∞(T2) and T1 is not of class C0, then T1 ∼ ϕ(T2) for some conformal auto-

morphism ϕ of D.

Proof. To prove (3), observe that H∞(T1) ∼ H∞(T2) implies that H∞(T2) is isomorphic
to H∞(T1). Assume that T1 is of class C0. If T1 is a scalar multiple of the identity, then
H∞(T1) = CI , and therefore H∞(T2) = CI and then T2 must be a scalar multiple of the identity,
hence of class C0. If T1 is not a scalar multiple of the identity, then H∞(T1) has zero divisors.
Indeed, in this case the minimal function m of T1 can be factored into a product m = m1m2
of two nonconstant inner functions, and then m1(T1) = 0 = m2(T1), while m1(T1)m2(T1) = 0.
We conclude that H∞(T2) must also have zero divisors, and this obviously implies that T2 is of
class C0.

Finally, assume that H∞(T1) ∼ H∞(T2) and T1 (as well as T2 by part (3)) is not of class
C0. Let Q and R be quasiaffinities satisfying the conditions of Definition 5.3 for the alge-
bras A1 = H∞(T1) and A2 = H∞(T2). The hypothesis implies that the maps u 
→ u(T1) and
u 
→ u(T2) are algebra isomorphisms from H∞ to H∞(T1) and H∞(T2), respectively. Thus, for
every u ∈ H∞ there exists a unique v ∈ H∞ satisfying v(T2) = R−1u(T1)R. The map Φ : u 
→ v

is an algebra automorphism of H∞. In particular, the function ϕ = Φ(idD) must have spectrum
(in H∞) equal to D, so that ϕ(D) = D. We claim that Φ(u) = u ◦ ϕ for every u ∈ H∞. In-
deed, given λ ∈ D, we can factor u(z) − u(ϕ(λ)) = (z − ϕ(λ))w for some w ∈ H∞, so that
Φ(u) − u(ϕ(λ)) = (ϕ − ϕ(λ))Φ(w). The equality (Φ(u))(λ) = u(ϕ(λ)) follows immediately.
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Since Φ is an automorphism, it follows that ϕ is a conformal automorphism of D, and clearly
T1 ∼ ϕ(T2). �
Corollary 5.6. Let T be a completely nonunitary contraction. If T ∼ S then H∞(T ) is confluent.
If T ∼ S(m) then H∞(T ) has a rationally strictly cyclic vector.

Proof. It suffices to observe that H∞(S) = WS , H∞(S(m)) = WS(m), and to apply Proposi-
tion 5.4(2), (5) and (4). �

For operators of class C0, the converse of the preceding result is also true. The case of conflu-
ent algebras of the form H∞(T ) will be discussed more thoroughly in the remaining two sections
of the paper.

Proposition 5.7. Assume that T is a completely nonunitary contraction such that H∞(T ) has a
rationally strictly cyclic vector.

(1) If there exists f ∈ H∞ \ {0} such that kerf (T ) = {0}, then T is of class C0 and T ∼ S(m),
where m is the minimal function of T .

(2) If kerf (T ) = {0} for every f ∈ H∞ \ {0}, then H∞(T ) is confluent.

Proof. Part (2) follows immediately from Proposition 4.8. To verify (1), assume that f ∈
H∞ \ {0}, kerf (T ) = {0}, and H∞(T ) has a rationally strictly cyclic vector h0 ∈ H. Choose
a nonzero vector h1 ∈ kerf (T ), and functions u1, v1 ∈ H∞ such that v1(T ) is injective and
v1(T )h1 = u1(T )h0. The function u1 is not zero since v1(T )h1 = 0. We claim that f (T )u1(T ) =
0. Indeed, let h be an arbitrary vector in H. Choose u,v ∈ H∞ such that v(T ) is injective and
v(T )h = u(T )h0. We have then

v(T )
[
f (T )u1(T )h

]= f (T )u1(T )
[
v(T )h

]= f (T )u1(T )u(T )h0

= f (T )u(T )u1(T )h0 = f (T )u(T )v1(T )h1 = 0,

and therefore f (T )u1(T )h = 0. Thus T is of class C0 because (f u1)(T ) = 0 and f u1 ∈
H∞ \ {0}.

Finally, let m be the minimal function of T , denote by M the cyclic space for T generated
by h0, and set N = M⊥. Let T ′ = PN T | N be the compression of T to N . Clearly we have
m(T ′) = 0. Now let h ∈ N be a vector, and pick u,v ∈ H∞ such that v(T ) is injective and
v(T )h = u(T )h0. In particular, we have v(T ′)h = 0. The injectivity of v(T ) is equivalent to the
condition v ∧ m = 1, and this implies that v(T ′) is injective as well, so that h = 0 We proved
therefore that M = H. In other words, T has a cyclic vector, and thus T ∼ S(m) by the results
of [25] (see also [4, Theorem III.2.3]). �

We conclude this section with a result about arbitrary operators of class C0.

Proposition 5.8. For any operator T of class C0, the commutant {T }′ has the closability property.

Proof. The operator T is quasisimilar to an operator of the form T ′ =⊕
i∈I S(mi), where each

mi is an inner function; see [4, Theorem III.5.1]. By Proposition 5.4(7), it suffices to show that
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{T ′}′ has the closability property. Now, {T ′}′ ⊃ ⊕
i∈I {S(mi)}′, and Lemma 3.8 shows that it

suffices to show that {S(m)}′ has the closability property for each inner function m. This follows
from Proposition 3.7 because {S(m)}′ = WS(m). �
6. Confluent algebras of the form H∞(T )

Consider a completely nonunitary contraction T ∈ L(H) such that H∞(T ) has a rationally
strictly cyclic vector. According to Proposition 5.7, we have T ∼ S(m) if some nonzero operator
in H∞(T ) has nonzero kernel. Therefore we will restrict ourselves now to operators T such
that f (T ) is injective for every nonzero element of H∞. In other words, we will assume that
H∞(T ) is a confluent algebra (cf. Proposition 4.8) and dim H > 1. In this case, the space H can
be identified with a space of meromorphic functions. Let us denote by N the Nevanlinna class
consisting of those meromorphic functions in D which can be written as u/v, with u,v ∈ H∞.

Lemma 6.1. Assume that T is a completely nonunitary contraction such that H∞(T ) is con-
fluent. Let h,h0 be two vectors such that h0 = 0, and choose u,v ∈ H∞, v = 0, such that
v(T )h = u(T )h0. Then the function u/v ∈ N is uniquely determined by h and h0. We have
u/v = 0 if and only if h = 0.

Proof. Choose another pair of functions u1, v1 ∈ H∞, v1 = 0, satisfying v1(T )h = u1(T )h0.
We have

(
v1(T )u(T ) − v(T )u1(T )

)
h0 = (

v1(T )v(T ) − v(T )v1(T )
)
h = 0,

and therefore h0 ∈ ker(v1u − vu1)(T ). The hypothesis implies that v1u = vu1 and hence u/v =
u1/v1. �

The function u/v will be denoted h/h0. It is clear that the map h 
→ h/h0 is an injective
linear map from H to N , and u(T )h/u(T )h0 = h/h0 if u ∈ H∞ \ {0}. We also have

h

h0
= h

h1
· h1

h0

provided that h0, h1 ∈ H \ {0}. Now let h,h0 ∈ H \ {0}. There exists a unique integer n such that
the nonzero function h/h0 can be written as

h

h0
(z) = zn u(z)

v(z)

with u,v ∈ H∞ and u(0) = 0 = v(0). The number n will be denoted ord0(h/h0). It will be
convenient to write ord0(h/h0) = ∞ if h = 0.

Lemma 6.2. Let T be a completely nonunitary contraction such that H∞(T ) is confluent. Then
0 � inf{ord0(h/h0): h ∈ H} > −∞ for every h0 ∈ H \ {0}.

Proof. Clearly ord0(h0/h0) = 0. For each integer n, the set

Hn = {
h ∈ H: ord0(h/h0) � −n

}
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is a linear manifold, and
⋃

n�0 Hn = H. Given integers m,k such that k � 1, we denote by Dm,k

the set of all vectors h ∈ H for which h/h0 can be written as

h

h0
(z) = z−m u(z)

v(z)

with ‖u‖∞,‖v‖∞ � k and |u(0)|, |v(0)| � 1. Observe that

⋃
m�n,k�1

Dm,k = Hn \ {0}.

The proposition will follow if we can show that one of the sets Dm,k has an interior point, and
this will follow from the Baire category theorem once we prove that each Dm,k is closed. Assume
indeed that (hi)

∞
i=0 ⊂ Dm,k is a sequence such that hi → h as i → ∞. For each i write

hi

h0
(z) = z−m ui

vi

with ‖ui‖∞,‖vi‖∞ � k and |ui(0)|, |vi(0)| � 1. By the Vitali–Montel theorem we can assume,
after dropping to a subsequence, that there exist functions u,v ∈ H∞ such that ui(z) → u(z)

and vi(z) → v(z) uniformly for z in each compact subset of D. Clearly ‖u‖∞,‖v‖∞ � k and
|u(0)|, |v(0)| � 1. Moreover, we have ui(T )h0 → u(T )h0 and vi(T )hi → v(T )h in the weak
topology. (For the second sequence we need to write

vi(T )hi − v(T )h = vi(T )(hi − h) + (
vi(T ) − v(T )

)
h,

and use the fact that the first term tends to zero in norm, while the second tends to zero weakly
by [23, Theorem III.2.1].) The identities T mvi(T )hi = ui(T )h0 for m � 0 (resp., vi(T )hi =
T −mui(T )h0 for m < 0) therefore imply T mv(T )h = u(T )h0 (resp., v(T )h = T −mu(T )h0) so
that h/h0 = z−mu/v, and thus h ∈ Dm,k , as desired. �
Lemma 6.3. Let T be a completely nonunitary contraction such that H∞(T ) is confluent. Then
T is injective and T H is a closed subspace of codimension 1. Thus T is a Fredholm operator
with index(T ) = −1.

Proof. The operator T belongs to a confluent algebra, hence it is injective. Note next that

ord0(T h/h0) = ord0(h/h0) + 1

and hence

inf
{
ord0(h/h0): h ∈ H

}+ 1 = inf
{
ord0(h/h0): h ∈ T H

}
.

Since these numbers are finite, we cannot have T H = H. To conclude the proof, it will suffice
to show that T H has codimension one, since this implies that it is closed as well. Choose h0 ∈
H \ T H, and note that ord0(h/h0) � 0 for every h. Indeed, ord0(h/h0) = −n < 0 implies an
identity of the form

T nv(T )h = u(T )h0
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with u(0) = 0. Factoring u(z) − u(0) = zw(z), we obtain

h0 = 1

u(0)
T
(
T n−1v(T )h − w(T )h0

) ∈ T H,

a contradiction. Thus the function h/h0 is analytic at 0, and we can therefore define a linear
functional Φ : H → C by setting Φh = (h/h0)(0). We will show that kerΦ ⊂ T H. Indeed,
h ∈ kerΦ implies that v(T )h = T u(T )h0 for some u,v ∈ H∞ with v(0) = 0. Factoring again
v(z) − v(0) = zw(z), we obtain

h = 1

v(0)
T
(
u(T )h0 − w(T )h

) ∈ T H,

as claimed. Thus T H has codimension 1, and the lemma is proved. �
The preceding results allow us to describe completely the spectral picture of T , as well as

its commutant. The argument for (3) already appears in [10], and is included for the reader’s
convenience.

Theorem 6.4. Let T ∈ L(H) be a completely nonunitary contraction such that H∞(T ) is con-
fluent. Then

(1) We have σ(T ) = D and σe(T ) = T.
(2) For each λ ∈ D, λI − T is injective and has closed range of codimension 1.
(3)

∨{ker(λI − T ∗) : λ ∈ D} = H. More generally,
∨{ker(λI − T ∗): λ ∈ S} = H whenever the

set S ⊂ D has an accumulation point in D.
(4) For every nonzero invariant subspace M of T , there exists an inner function m ∈ H∞ such

that m(T )H = M and the compression TM⊥ of T to M⊥ is quasisimilar to S(m). Con-
versely, for every inner function m, the minimal function of T(m(T )H)⊥ is m.

(5) {T }′ = H∞(T ).
(6) The operator T is of class C10. Thus, the powers T ∗n converge strongly to zero and

limn→∞ ‖T nh‖ = 0 for h ∈ H \ {0}.

In particular, properties (2) and (3) say that T ∗ belongs to the class B1(D) defined in [10].

Proof. For λ ∈ D, the operator Tλ = (I − λT )−1(T − λI) is also a completely nonunitary con-
traction, and H∞(Tλ) = H∞(T ) is confluent. Thus Lemma 6.3 implies immediately (2). In turn,
(1) follows from (2) since T is a contraction.

Next we prove (4). Let M = {0} be invariant for T , set N = M⊥, and choose h0 ∈ M \ {0}.
Denote by T ′ = PN T | N the compression of T to N . Given h ∈ N , an equality of the form
v(T )h = u(T )h0 implies v(T )h ∈ M, and therefore v(T ′)h = 0. The fact that h0 is rationally
strictly cyclic for H∞(T ′) implies that T ′ is locally of class C0, and hence of class C0 by [24]
(see also [4, Theorem III.3.1]). Denote by m the minimal function of T ′. Note that in particular
PN m(T ) | N = m(T ′) = 0, so that

m(T )N ⊂ M. (6.1)
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We show next that T ′ has a cyclic vector, and hence it is quasisimilar to S(m). Assume to the
contrary that T ′ does not have a cyclic vector, and let N1, N2 be cyclic spaces for T ′ gener-
ated by two nonzero vectors h1, h2 such that T ′ | N1 ∼ S(m) and N1 ∩ N2 = {0} (see [25] or
[4, Theorem III.2.13]). There exist nonzero functions u1, u2 ∈ H∞ such that u1(T )h1 =
u2(T )h2. Dividing these functions by their greatest common inner divisor, we may assume that
u1 and u2 do not have any (non constant) common inner factor. We also have u1(T

′)h1 =
u2(T

′)h2 ∈ N1 ∩ N2, and hence these vectors are equal to zero. We deduce that m divides
u1, and hence m ∧ u2 = 1. This last equality implies that u2(T

′) is a quasiaffinity, hence
u2(T

′)h2 = 0, a contradiction. Thus T ′ is indeed cyclic. Using (6.1), we observe that m(T )H =
m(T )M +m(T )N ⊂ M. Denote now M1 = m(T )H, N1 = M⊥

1 , and T1 = PN1T | N1. Clearly
m(T1) = 0, and T ′ ∗ = T ∗

1 | N . It follows that the minimal function of T1 is also m. Applying to
T1 the argument showing that T ′ has a cyclic vector yields the same for T1. Hence M = M1 by
the results of [25] (see also [4, Theorem III.2.13]).

We start next with a given inner function m, and denote by m1 the minimal function of
T(m(T )H)⊥ . The function m1 must divide m, so that m = m1m2 for some other inner function m2.

With the notation H1 = m1(T )H = m(T )H, T1 = T | H1, the algebra H∞(T1) is confluent, and

m2(T1)H1 = m2(T )m1(T )H = m(T )H = H1,

so m2(T1) has dense range. We claim that m2(T1)M = M for every invariant subspace M for
T1. Indeed, from the first part of (4) we know that M = m3(T1)H1 for some inner function m3.
Hence

m2(T1)M = m2(T1)m3(T1)H1 = m3(T1)m2(T1)H1 = m3(T1)H1 = M,

as claimed. Since H∞(T1) is confluent, we have σ(T1) = D by part (1) of the theorem. This
implies that T1 belongs to the class A defined in [5]. By the results of [8], there exist vectors
x, y ∈ H1 such that

〈
u(T1)x, y

〉= 1

2π

2π∫
0

(
1 − m2(0)m2

(
eit
))

u
(
eit
)
dt

for all u ∈ H∞. In particular, 〈v(T1)m2(T1)x, y〉 = 0 for v ∈ H∞. Set M = ∨{T n
1 x: n � 0},

and observe now that y ⊥ m2(T1)M, and therefore y ⊥ M as well. In particular,

0 = 〈x, y〉 = 1

2π

2π∫
0

(
1 − m2(0)m2

(
eit
))

dt = 1 − ∣∣m2(0)
∣∣2,

and this implies that m2 is a constant function. We reach the desired conclusion that the minimal
function of T(m(T )H)⊥ is m.

To prove (3), assume that S ⊂ D has an accumulation point in D, and note that the space N =∨{ker(λI − T ∗): λ ∈ S} is invariant for T ∗. Therefore M = N ⊥ is invariant for T . If M = {0},
we have then m(T )H ⊂ M for some inner function m, and therefore kerm(T )∗ ⊃ N . Given
λ ∈ S, choose a nonzero vector fλ ∈ ker(λI − T ∗), and observe that 0 = m(T )∗fλ = m(λ)fλ.
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Thus m(λ) = 0 for λ ∈ S, and we conclude that m = 0, which is impossible. This contradiction
implies that M = {0}, thus verifying (6.1).

Consider next an operator X ∈ {T }′ = H∞(T )′. By Proposition 4.6, there exist u,v ∈ H∞,
v = 0, so that v(T )X = u(T ). With fλ as above, we have

v(λ)X∗fλ = (
v(T )X

)∗
fλ = u(T )∗fλ = u(λ)f (λ),

and thus
∣∣∣∣u(λ)

v(λ)

∣∣∣∣= ‖X∗fλ‖
‖fλ‖ �

∥∥X∗∥∥.
We deduce that w = u/v ∈ H∞ and X = w(T ).

The fact that the powers of T ∗ tend strongly to zero follows from (3) because T ∗nfλ =
λnfλ → 0 as n → ∞ for λ ∈ D. It remains to prove that the space

M =
{
h ∈ H: lim

n→∞
∥∥T nh

∥∥= 0
}

is equal to {0}. Assume to the contrary that M = {0}, and observe that H∞(T | M) is also
confluent. In particular, σ(T | M) = D and T | M is of class C00. According to [7] and
[5, Theorem 6.6], T | M belongs to the class Aℵ0 , and, by [5, Corollary 5.5], T has a further
invariant subspace N ⊂ M such that N � T N has infinite dimension. This space must however
have dimension 1 because H∞(T | N ) is confluent. This contradiction shows that we must have
M = {0}, as claimed. �

Recall that N+ ⊂ N denotes the collection of functions of the form u/v, where u,v ∈ H∞
and v is outer.

Corollary 6.5. Let T ∈ L(H) be a completely nonunitary contraction such that H∞(T ) is con-
fluent, and fix a vector h0 ∈ kerT ∗, h0 = 0. Assume that H = ∨{T nh0: n � 0}; that is, h0 is
cyclic for T . Then h/h0 ∈ N+ for every h ∈ H.

Proof. We can assume that h = 0. Now choose functions u,u0 ∈ H∞ \ {0} such that u0/u =
h/h0. Thus we have u0(T )h0 = u(T )h. Consider the factorizations u = mv and u0 = m0v0,
where m,m0 are inner and v, v0 are outer. By [23, Proposition III.3.1], the operator v0(T ) is a
quasiaffinity, and therefore

m0(T )H =
∨
n�0

T nv0(T )m0(T )h0 =
∨
n�0

T nv(T )m(T )h ⊂ m(T )H.

It follows that (m(T )H)⊥ ⊂ (m0(T )H)⊥, and thus m divides m0 by Theorem 6.4(4). It follows
that

h

h0
= u0

u
= v0(m0/m)

v
∈ N+,

as claimed. �
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We will denote by A the disk algebra. This consists of those functions in H∞ which are
restrictions of continuous functions on D. If T is a completely nonunitary contraction, we set
A(T ) = {u(T ): u ∈ A}.

Corollary 6.6. Consider an operator T ∈ L(H), where H is an infinite dimensional Hilbert
space. Then

(1) The algebra PT is not confluent.
(2) If T is a completely nonunitary contraction, then A(T ) is not confluent.

Proof. In proving (1), there is no loss of generality in assuming that ‖T ‖ < 1 since PT = PαT for
any α > 0. Under this assumption, we have PT ⊂ A(T ), so it suffices to prove part (2). Assume
therefore that T is a completely nonunitary contraction and A(T ) is confluent. The larger algebra
H∞(T ) is confluent as well, and Proposition 4.6 implies that for every f ∈ H∞, the operator
f (T ) ∈ {T }′ = A(T )′ can be written as f (T ) = v(T )−1u(T ) with u,v ∈ A, v = 0. We have
then v(T )f (T ) = u(T ), and thus f = u/v. It is known, however, that there are functions in
H∞ which cannot be represented as quotients of elements of A. An example is provided by any
singular inner function

f (λ) = e
− ∫

T

ζ+λ
ζ−λ

dμ(ζ )
, λ ∈ D,

such that the closed support of the singular measure μ is the entire circle T. �
The assertion in Proposition 4.6, concerning unbounded linear transformations can be im-

proved when H∞(T ) is confluent.

Proposition 6.7. Let T ∈ L(H) be a completely nonunitary contraction such that H∞(T ) is
confluent. Then every closed, densely defined linear transformation commuting with T is of the
form v(T )−1u(T ), where u,v ∈ H∞ and v is an outer function.

Proof. Let X be a closed, densely defined linear transformation commuting with T . Since X

is closed, it must also commute with every operator in H∞(T ). By Proposition 4.6, there exist
u,v ∈ H∞ such that v ≡ 0 and X ⊂ v(T )−1u(T ). Let us set

T1 = (T ⊕ T ) | G
(
v(T )−1u(T )

)
,

and observe that the quasiaffinity Q : h ⊕ k 
→ h from G(v(T )−1u(T )) to H satisfies QT1 =
T Q. Thus H∞(T1) ≺ H∞(T ), and therefore H∞(T1) is confluent by Proposition 5.2(3). The
subspace G(X) is invariant for T1, so

G(X) = m(T1)G
(
v(T )−1u(T )

)
for some inner function m. To prove the equality X = v(T )−1u(T ), it suffices to show that m is
in fact constant. Indeed, we have

m(T )H = m(T )QG
(
v(T )−1u(T )

)= Qm(T1)G
(
v(T )−1u(T )

)
= QG(X) = D(X) = H,
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and the desired conclusion follows from the second assertion in Theorem 6.4(4). There is no loss
of generality in assuming that u and v do not have any nonconstant common inner divisor. We
conclude the proof by showing that in this case v must be outer. Let m be an inner divisor of v,
and note that for every h ⊕ k ∈ G(X) we have

u(T )h = v(T )k ∈ m(T )H,

and therefore u(T )D(X) ⊂ m(T )H. Since D(X) is dense in H, we conclude that
u(T(m(T )H)⊥) = 0, and therefore m divides u. Thus m is constant, and hence v is outer. �

It follows from the results of [10] that the one-dimensional spaces ker(λI − T )∗ depend ana-
lytically on λ and, in fact, there exists an analytic function f : D → H such that ker(λI − T )∗ =
Cf (λ) for λ ∈ D. A local version of this result is easily proved. Indeed, set L = (T ∗T )−1T ∗.
Given a unit vector f0 ∈ kerT ∗, the function

f (λ) = (
I − λL∗)−1

f0 =
∞∑

n=0

λnL∗nf0 (6.2)

is analytic for |λ| < 1/‖L‖, and obviously T ∗f (λ) = λf (λ). This calculation is valid for any
left inverse of T . The operator L has the advantage that L∗H = T H, and therefore 〈T nf0, f0〉 =
〈f0,L

∗nf0〉 = 0 for n � 1. These relations, along with LT = I , obviously imply

〈
T nf0,L

∗mf0
〉= δnm, n,m � 0. (6.3)

Proposition 6.8. Let T ∈ L(H) be a completely nonunitary contraction such that H∞(T ) is
confluent. Define L = (T ∗T )−1T ∗ and fix a unit vector f0 ∈ kerT ∗. Then

(1) The vector f0 is cyclic for L∗.
(2)

⋂{T nH: n � 0} = {0}.
(3)

⋂{L∗nH: n � 0} = H � [∨{T nf0: n � 0}].

Proof. We have seen that ker(λI − T ∗) = Cf (λ) for λ close to zero, where f (λ) is given by
(6.2) and belongs to

∨{L∗nf0: n � 0}. Thus (1) follows from Theorem 6.4(3). To prove (2), let
f be a nonzero element in the intersection, and set

k = inf
{
ord0(h/f0): h ∈ H

}
, m = ord0(f/f0) < ∞.

For each integer n we can write f = T ng for some g = 0, and therefore

m = n + ord0(g/f0) � n + k.

This yields a contradiction for large n.
The orthogonality relations (6.3) imply the inclusion

⋂
L∗nH ⊂ H �

∨
T nf0.
n�0 n�0
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Conversely, consider a vector h ∈ H � [∨{T nf0: n � 0}]. Given n � 1, we have

h = L∗nT ∗nh +
n−1∑
k=0

L∗k
(
I − L∗T ∗)T ∗kh.

Since I − L∗T ∗ is the orthogonal projection onto Cf0, and

〈
T ∗kh,f0

〉= 〈
h,T kf0

〉= 0,

we deduce that h = L∗nT ∗nh ∈ L∗nH, thus proving the opposite inclusion. �
7. Confluence and functional models

The results in Section 6 show that completely nonunitary contractions T for which H∞(T )

is confluent share many of the properties of the unilateral shift S. In this section we will de-
scribe some quasiaffine transforms of such operators T . These quasiaffine transforms are in fact
functional models associated with purely contractive inner functions of the form

Θ =
[

θ1
θ2

]
,

where θ1, θ2 ∈ H∞. The condition that Θ be inner amounts to the requirement that

∣∣θ1(ζ )
∣∣2 + ∣∣θ2(ζ )

∣∣2 = 1, a.e. ζ ∈ T,

while pure contractivity means simply that

∣∣θ1(0)
∣∣2 + ∣∣θ2(0)

∣∣2 < 1.

We recall the construction of the functional model associated with such a function Θ . The sub-
space

{
θ1u ⊕ θ2u: u ∈ H 2}⊂ H 2 ⊕ H 2

is obviously invariant for S ⊕ S, and thus the orthogonal complement

H(Θ) = [
H 2 ⊕ H 2]� {

θ1u ⊕ θ2u: u ∈ H 2}
is invariant for S∗ ⊕S∗. The operator S(Θ) ∈ L(H(Θ)) is the compression of S ⊕S to this space
or, equivalently, S(Θ)∗ = (S∗ ⊕ S∗) | H(Θ).

Observe that I − S(Θ)∗S(Θ) has rank one, while I − S(Θ)S(Θ)∗ has rank two. It follows
that σ(S(Θ)) = D, and in particular S(Θ) is not of class C0.

Lemma 7.1. Let Θ = [ θ1
θ2

]
be a purely contractive inner function. The algebra H∞(S(Θ)) is

confluent if and only if the functions θ1 and θ2 do not have a nonconstant common inner factor.
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Proof. If either of the functions θj is equal to zero, the other one must be inner. The lemma is
easily verified in this case. Indeed, assume that θ1 is inner and θ2 = 0. If θ1 is not constant then
ker θ1(S(Θ)) = {0}, so that H∞(S(Θ)) is not confluent. Also, θ1 is a common inner divisor of
θ1 and θ2, so that both conditions in the statement are false. On the other hand, if θ1 is constant
then Θ is not pure, so this case does not arise.

For the remainder of this proof, we consider the case in which both functions θj are different
from zero. Assume first that θj = mϕj , where m is a nonconstant inner function and ϕj ∈ H∞ for
j = 1,2. The nonzero vector h ∈ H(Θ) defined by h = PH(Θ)(ϕ1 ⊕ϕ2) satisfies m(S(Θ))h = 0,
and therefore m(S(Θ)) has nontrivial kernel. Thus H∞(S(Θ)) is not confluent.

Assume now that θ1 and θ2 do not have a nonconstant common inner factor. We verify first
that keru(S(Θ)) = {0} for u ∈ H∞ \{0}. It suffices to consider the case of an inner function u. A
vector f1 ⊕ f2 ∈ keru(S(Θ)) must satisfy uf1 = θ1g and uf2 = θ2g for some g ∈ H 2. The fact
that θ1 ∧ θ2 = 1 implies that u divides g, and therefore f1 ⊕ f2 = θ1(g/u) ⊕ θ2(g/u) belongs
to H(Θ)⊥; the equality f1 ⊕ f2 = 0 follows. To conclude the proof, we will show that h =
PH(Θ)(1 ⊕ 0) is a rationally strictly cyclic vector for H∞(S(Θ)). Indeed, assume that f =
f1 ⊕ f2 ∈ H(Θ) \ {0}, and write f1 = a1/b and f2 = a2/b, where a1, a2, b ∈ H∞ and b is outer.
Define functions u = −bθ2, v = θ1a2 − θ2a1, and note that

v
(
S(Θ)

)
h − u

(
S(Θ)

)
f = PH(Θ)(v ⊕ 0 − uf1 ⊕ uf2)

= PH(Θ)(θ1a2 ⊕ θ2a2) = 0.

The lemma follows because u ≡ 0, and hence u(S(Θ)) is injective. �
Let us remark that the condition θ1 ∧ θ2 = 1 is equivalent to the fact that the function Θ is

∗-outer. In other words, the operators S(Θ) described in the preceding lemma are of class C10.
This is in agreement with Theorem 6.4(6).

Proposition 7.2. Assume that T is a completely nonunitary contraction such that H∞(T ) is
confluent. Then

(1) Either S ≺ T or there exists a purely contractive inner function Θ = [ θ1
θ2

]
such that

S(Θ) ≺ T and H∞(S(Θ)) is confluent.
(2) We have S ≺ T if and only if T has a cyclic vector.

Proof. Denote by U+ ∈ L(K+) the minimal isometric dilation of T . Thus H ⊂ K+ and T PH =
PHU+. Since T ∈ C10, the operator U+ is a unilateral shift. Let us set M = ∨{T nh1: n � 0},
where h1 ∈ H \ {0}, and let h2 ∈ H � M be a cyclic vector for the compression of T to this
subspace. Such a vector exists by Theorem 6.4(4). Observe that H = ∨{T nh1, T

nh2: n � 0}.
We define now a space

E =
∨{

Un+h1,U
n+h2: n � 0

}

and an operator Y ∈ L(E , H) by setting Y = PH | E . The space E is invariant for U+,
Y(U+ | E ) = T Y , and Y has dense range. Moreover, the restriction U+ | E is a unilateral shift of
multiplicity 1 or 2. Finally, set H′ = E � kerY , X = Y | H′, and denote by T ′ the compression
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of U+ | E to the space H′. Then XH′ = Y E so that X is a quasiaffinity, and XT ′ = T X. Thus we
have T ′ ≺ T and hence H∞(T ′) is confluent by Proposition 5.2(3).

We will now prove that at least one of the following alternatives must hold: either S ≺ T ′ or
T ′ is unitarily equivalent to an operator of the form S(Θ), where Θ = [ θ1

θ2

]
is a purely contractive

inner function. For this, we first note that U+ | E is the minimal isometric lifting of T ′. Therefore
T ′ is of class C•0 and its functional model is the compression of the canonical shift on H 2(DT ′ ∗)
to

H(ΘT ′) = H 2(DT ′ ∗) � ΘT H 2(DT ′),

where

ΘT (z) : DT ′ → DT ′ ∗ , z ∈ D,

is the characteristic function of T ′. Therefore ΘT ′ is a purely contractive inner function and
according to [23, Chapter VI]

dim DT ′ � dim DT ′ ∗ = dim E .

Thus we must consider the following possibilities:

(i) dim DT ′ = dim DT ′ ∗ = 2;
(ii) dim DT ′ = 1, dim DT ′ ∗ = 2;

(iii) dim DT ′ = 0, dim DT ′ ∗ = 2;
(iv) dim DT ′ = dim DT ′∗ = 1; and
(v) dim DT ′ = 0, dim DT ′ ∗ = 1.

In cases (i) and (iv) T ′ is of class C00, hence of class C0 (see [23, Proposition VI.3.5 and Theo-
rem VI.5.2]), thus H∞(T ′) is not confluent. In case (ii) T ′ is unitarily equivalent to an operator
of the form S(Θ), where Θ = [ θ1

θ2

]
is a purely contractive inner function. In case (iii) T ′ is uni-

tarily equivalent to S ⊕ S and H∞(S ⊕ S) is not confluent; to see this consider the vectors 1 ⊕ 0
and 0 ⊕ 1. Finally, in case (v) T ′ is unitarily equivalent to S, and thus S ≺ T .

If T has a cyclic vector h1, we can take h2 = 0, and then U+ | E is a shift of multiplicity 1. In
this case, we must have kerY = {0} so that U+ | E ≺ T . Conversely, S ≺ T implies that T has a
cyclic vector since S has one. �

The argument in the preceding proof appeared earlier in the classification of contractions of
class C•0 [26,27], and even earlier in [14] and in the study of the class C0 [22].

When T has a cyclic vector, it is natural to ask under what conditions we actually have T ∼ S.

Lemma 7.3. Assume that T is a completely nonunitary contraction such that H∞(T ) is conflu-
ent. Then the following assertions are equivalent:

(1) T ≺ S.
(2) T | M ≺ S for some invariant subspace M of T .
(3) T | M ≺ S for every nonzero invariant subspace M of T .
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Proof. The implications (3) ⇒ (1) ⇒ (2) are obvious. Next we show that T ≺ T | M for every
nonzero invariant subspace M of T . By Theorem 6.4(4), there is an inner function m such that
m(T )H = M. Then the operator X : H → M defined by Xh = m(T )h, h ∈ H, is a quasiaffinity
and XT = (T | M)X. Using this fact, it is easy to show that (2) ⇒ (1). Indeed, if (2) holds we
have T | M ≺ S for some M, and the relations T ≺ T | M ≺ S imply the desired conclusion
T ≺ S. Finally, we prove that (1) ⇒ (3). Assume that (1) holds, so that YT = SY for some
quasiaffinity Y . If M is a nonzero invariant subspace for T , the operator Z = Y | M : M → Y M
is a quasiaffinity realizing the relation T | M ≺ S | Y M. We conclude that (3) is true since
S | Y M is unitarily equivalent to S. �

We can now state some conditions equivalent to the relation T ∼ S.

Theorem 7.4. Assume that T is a completely nonunitary contraction such that H∞(T ) is con-
fluent and has a cyclic vector. Let f : D → H be an analytic function such that ‖f (0)‖ = 1
and ker(λI − T ∗) = Cf (λ) for every λ ∈ D, and denote H0 = ∨{T nf (0): n � 0}. Then the
following conditions are equivalent:

(1) T ∼ S.
(2) T | H0 ≺ S.
(3) There exists an outer function b ∈ H∞ such that b(h/f (0)) ∈ H 2 for every h ∈ H0.
(4) There exists an outer function b ∈ H∞ such that

b
〈h,f (λ̄)〉

〈f (0), f (λ̄)〉 ∈ H 2

for every h ∈ H0.

Proof. Since T has a cyclic vector, we have S ≺ T by Proposition 7.2(2). Therefore T ∼ S is
equivalent to T ≺ S, and this is equivalent to condition (2) by Lemma 7.3. This establishes the
equivalence (1) ⇔ (2).

For an arbitrary h ∈ H \ {0}, write the function h/f (0) as a quotient u/v of functions in H∞.
We have then

〈
v(T )h,f (λ̄)

〉= 〈
h,v(T )∗f (λ̄)

〉= 〈
h, v(λ)f (λ̄)

〉= v(λ)
〈
h,f (λ̄)

〉
,

and analogously 〈u(T )f (0), f (λ̄)〉 = u(λ)〈f (0), f (λ̄)〉. Since v(T )h = u(T )f (0), we conclude
that

b(λ)
h

f (0)
(λ) = b(λ)

〈h,f (λ̄)〉
〈f (0), f (λ̄)〉 (7.1)

for those λ for which the denominators do not vanish. This proves the equivalence (3) ⇔ (4).
Note that the analytic function 〈f (0), f (λ̄)〉 cannot be identically zero since it takes the value 1
for λ = 0.

It remains to prove the equivalence (2) ⇔ (3), and for this purpose we may as well assume that
H = H0. We apply the construction in the proof of Proposition 7.2 for this particular case. Thus,
consider the minimal isometric dilation U+ ∈ L(K+) of T , and denote E =∨{Un+f (0): n � 0}.
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Since U∗+f (0) = T ∗f (0) = 0, there exists a unitary operator W : H 2 → E such that W1 = f (0)

and WS = (U+ | E )W . One can then construct a quasiaffinity Y : H 2 → H, namely Y = PHW ,
such that T Y = YS and Y1 = f (0). Since an equality of the form v(S)x = u(S)1 for x ∈ H 2 is
equivalent to v(T )Yx = u(T )f (0), we deduce that

Yx

f (0)
= x, x ∈ H 2,

and, conversely, that any vector h ∈ H such that k = h/f (0) ∈ H 2 must belong to YH 2; namely
h = Yk.

With this preparation, assume that (2) holds, and let X ∈ L(H,H 2) be a quasiaffinity such
that XT = SX. Then the operator XY is a quasiaffinity in the commutant of S, and therefore
XY = b(S) for some outer function b ∈ H∞. The equality

X
(
b(T ) − YX

)= b(S)X − (XY)X = 0

implies that we also have YX = b(T ). For any h ∈ H \ {0} we have then

b
h

f (0)
= b(T )h

f (0)
= YXh

Y1
= Xh ∈ H 2,

thus proving (3). Conversely, if (3) holds, we can define a linear map X : H → H 2 by setting
Xh = b(h/f (0)) for h ∈ H, and this map obviously satisfies XT = SX. Using (7.1) it is easy to
verify that X is a closed linear transformation, and hence X is continuous. It is also immediate
that XY = b(S) and YX = b(T ), and this implies that X is a quasiaffinity since b is outer. �
Corollary 7.5. Assume that T ∈ L(H) is a completely nonunitary contraction such that T ∼ S.
Let f : D → H be an analytic function such that ‖f (0)‖ = 1 and ker(λI − T ∗) = Cf (λ) for
every λ ∈ D, and assume that H =∨{T nf (0): n � 0}. Then 〈f (0), f (λ)〉 = 0 for every λ ∈ D.

Proof. Let b be an outer function satisfying condition (4) of Theorem 7.4. Assume that
〈f (0), f (λ̄)〉 = 0 for some λ ∈ D. Since b(λ) = 0, it follows that 〈h,f (λ̄)〉 = 0 for every h ∈ H,
and therefore f (λ̄) = 0, which is impossible since this vector generates ker(λI − T )∗. �

The relation T ≺ S can also be studied in terms of the minimal unitary dilation of T . We will
denote by R∗ ∈ L(R∗) the ∗-residual part of this minimal unitary dilation; see [23, Section II.3]
for the relevant definitions. The facts we require about this operator are as follows:

(a) R∗ is a unitary operator with absolutely continuous spectral measure relative to arclength
measure on T.

(b) There exists an operator Z : H → R∗ (namely, the orthogonal projection onto R∗) such that
ZT = R∗Z and

‖Zh‖ = lim
n→∞

∥∥T nh
∥∥.

In particular, Z is injective if and only if T is of class C1·.
(c) The smallest reducing subspace for R∗ containing ZH is R∗.
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Proposition 7.6. Assume that T is a completely nonunitary contraction such that H∞(T ) is
confluent. Then

(1) The ∗-residual part R∗ of the minimal unitary dilation of T has spectral multiplicity at
most 1.

(2) We have T ≺ S if and only if R∗ is a bilateral shift of multiplicity 1.
(3) We have T ≺ R∗ | ZH, and T ≺ S if and only if ZH = R∗.
(4) T ∗ has a cyclic vector.

Proof. Given h1, h2 ∈ H \ {0}, select u1, u2 ∈ H∞ \ {0} such that u1(T )h1 = u2(T )h2. Then
we have u1(R∗)Zh1 = u2(R∗)Zh2. Since u1(ζ ) and u2(ζ ) are different from zero a.e. relative to
the spectral measure of R∗, it follows that the vectors Zh1 and Zh2 generate the same reducing
space for R∗. Therefore R∗ has a ∗-cyclic vector, and this implies (1).

Next we prove (3). The fact that T ≺ R∗ | ZH is immediate. If ZH is not reducing, then
R∗ | ZH is unitarily equivalent to S and hence T ≺ S. Conversely, if T ≺ S, let W be a quasi-
affinity such that WT = SW . For any h ∈ H we have

‖Wh‖ = lim
n→∞

∥∥SnWh
∥∥= lim

n→∞
∥∥WT nh

∥∥� ‖W‖‖Zh‖,

so there exists an operator X : ZH → H 2 such that ‖X‖ � ‖W‖ and XZ = W . Since the range
of X contains the range of W , we have X = 0. Pick a vector f ∈ H 2 such that X∗f = 0, and
observe that

lim
n→∞

∥∥(R∗
∣∣ ZH)∗nX∗f

∥∥= lim
n→∞

∥∥X∗S∗nf
∥∥= 0.

Therefore R∗ | ZH is not unitary, and consequently ZH = R∗.
Assume now that T ≺ S. The fact that R∗ is a bilateral shift follows from (3) because the

only absolutely continuous unitary operator of multiplicity 1 which has nonreducing invariant
subspaces is the bilateral shift. Conversely, if R∗ is a bilateral shift, the results of [17] imply the
existence of an invariant subspace M for T such that T | M ≺ S. We deduce that T ≺ S by
Lemma 7.3. This proves (2).

Finally, (4) also follows from (3) because (R∗ | ZH)∗ has a cyclic vector. �
Corollary 7.7. Assume that Θ = [ θ1

θ2

]
is inner, ∗-outer, and purely contractive. Then S(Θ) ≺ S.

More precisely, the operator Q : H(Θ) → H 2 defined by Q(f1 ⊕ f2) = θ1f2 − θ2f1, f1 ⊕ f2 ∈
H(Θ), is a quasiaffinity and QS(Θ) = SQ.

Proof. We will show that PR∗ H(Θ) = R∗. To do this, we observe first that the minimal unitary
dilation of S(Θ) is the operator U ⊕U on L2 ⊕L2. The space R∗ is the orthogonal complement
of the smallest reducing space for U ⊕ U containing {θ1u ⊕ θ2u: u ∈ H 2}. Thus

R∗ = (
L2 ⊕ L2)� {

θ1u ⊕ θ2u: u ∈ L2},
and it follows that PR∗ is the operator of pointwise multiplication by the matrix

I − ΘΘ∗ =
[ |θ2|2 −θ2θ1

2

]
.
−θ2θ1 |θ1|
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Finally, we have PR∗ H(Θ) = PR∗(H
2 ⊕H 2), and therefore PR∗ H(Θ) is the invariant subspace

for U generated by PR∗(1 ⊕ 0) and PR∗(0 ⊕ 1). These two vectors are precisely

|θ2|2 ⊕ (−θ2θ1) = (−θ2u) ⊕ θ1u,

(−θ2θ1) ⊕ |θ1|2 = (−θ2v) ⊕ θ1v,

with u = −θ2 and v = θ1. Since θ1 and θ2 do not have nonconstant common inner divisors, the
invariant subspace for S they generate is the entire H 2. It follows that

PR∗ H(Θ) = {
(−θ2w) ⊕ θ1w: w ∈ H 2},

and R∗ | PR∗ H(Θ) is unitarily equivalent to S. The final assertion is verified by noting that (see
(b) above)

Z(f1 ⊕ f2) = PR∗(f1 ⊕ f2) = (−θ2Q(f1 ⊕ f2)
)⊕ (

θ1Q(f1 ⊕ f2)
)

for f1 ⊕ f2 ∈ H(Θ). �
The preceding result can be extended considerably. As seen in the proof below, the assumption

that I − T ∗T has finite rank can be replaced by the requirement that I − T T ∗ have finite rank.

Corollary 7.8. Let T be a completely nonunitary contraction such that H∞(T ) is confluent and
I − T ∗T has finite rank. Then

(1) We have T ≺ S.
(2) If in addition T has a cyclic vector, then T ∼ S.

Proof. Denote by n the rank of I − T ∗T , and observe that the characteristic function ΘT is
inner, ∗-outer, and coincides with an (n + 1) × n matrix over H∞. Indeed, ΘT (0) is a Fredholm
operator of index −1. It follows that I − ΘT (ζ )ΘT (ζ )∗ has rank 1 for a.e. ζ ∈ T, and therefore
R∗ is a bilateral shift by [23, Section VI.6]. Thus (1) follows from Proposition 7.6(2). Part (2)
follows from (1) and Proposition 7.2(2). �

The following result shows that there exist some purely contractive inner functions of the form
Θ = [ θ1

θ2

]
with the property that S(Θ) ≺ S. Thus part (1) of Proposition 7.2 could be restated as

follows:

(1) If T is a completely nonunitary contraction such that H∞(T ) is confluent, then there ex-
ists a purely contractive inner function Θ = [ θ1

θ2

]
such that S(Θ) ≺ T , and H∞(S(Θ)) is

confluent.

Corollary 7.9. Assume that Θ = [ θ1
θ2

]
is purely contractive, inner and ∗-outer.

(1) If f1 ⊕ f2 ∈ H(Θ) is cyclic for S(Θ), then θ1f2 − θ2f1 is an outer function.
(2) Conversely, if θ1f2 − θ2f1 is outer for some f1, f2 ∈ H 2, then PH(Θ)(f1 ⊕ f2) is cyclic for

S(Θ).
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(3) There exists Θ such that S(Θ) does not have a cyclic vector.
(4) We have S(Θ) ∼ S if and only if S(Θ) has a cyclic vector.

Proof. With the notation of Corollary 7.7, Q(f1 ⊕ f2) must be cyclic for S if f1 ⊕ f2 is cyclic
for S(Θ). This proves (1).

Conversely, assume that u = θ1f2 − θ2f1 is outer for some f1, f2 ∈ H 2. Upon multiplying
f1, f2 by some outer function, we may assume that f1, f2 ∈ H∞. Let g1 ⊕ g2 ∈ H(Θ) be a
vector orthogonal to

∨{S(Θ)nPH(Θ)(f1 ⊕ f2): n � 0}. We have then

〈g1 ⊕ g2, θ1p ⊕ θ2p〉 = 〈g1 ⊕ g2, f1p ⊕ f2p〉 = 0

for every polynomial p. Equivalently, θ1g1 + θ2g2 and f1g1 + f2g2 belong to L2 � H 2, and
therefore the functions

ug1 = f2(θ1g1 + θ2g2) − θ2(f1g1 + f2g2),

ug2 = θ1(f1g1 + f2g2) − f1(θ1g1 + θ2g2)

are also in L2 � H 2. Thus 〈gj ,up〉 = 0 for all polynomials p, and hence gj = 0, j = 1,2,
because u is outer. Assertion (2) follows.

To prove (3), let m1 and m2 be two relatively prime inner functions, and set θ1 = 3
5m1 and

θ2 = 4
5m2. Nordgren [18] showed that it is possible to choose m1 and m2 so that no function of

the form m1f2 − m2f1 is outer if f1, f2 ∈ H 2. The corresponding operator S(Θ) does not have
a cyclic vector. Finally (4) follows from Corollary 7.7 and Proposition 7.2(2). �

Let us also note a related result which follows easily from [28].

Proposition 7.10. Assume that Θ = [ θ1
θ2

]
is inner and ∗-outer. Then the operator S(Θ) is similar

to S if and only if there exist f1, f2 ∈ H∞ such that θ1f2 − θ2f1 = 1.

Proof. It was shown in [28] that S(Θ) is similar to an isometry if and only if Θ is left invertible.
To conclude, one must observe that the only possible isometry is a unilateral shift of multiplic-
ity 1. �

The proof of the following proposition follows easily from the above arguments, along with
the corresponding properties of S.

Proposition 7.11. Let T be a completely nonunitary contraction such that T ∼ S. Then T is of
class C10, both T and T ∗ have cyclic vectors, and the ∗-residual part R∗ of the minimal unitary
dilation of T is a bilateral shift of multiplicity 1.

The converse of this proposition is not true. Indeed, it was shown in [6] (see also [16]) that
there exist operators T of class C10, with a cyclic vector, such that R∗ is a bilateral shift of
multiplicity 1, and σ(T ) ⊃ D. For such operators we will have R∗∗ ≺ T ∗, so T ∗ also has a cyclic
vector, but T ⊀ S.

The following partial converse follows from Propositions 7.2(2) and 7.6(2).
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Proposition 7.12. Let T be a completely nonunitary contraction such that H∞(T ) is confluent, T
has a cyclic vector, and the ∗-residual part R∗ of the minimal unitary dilation of T is a bilateral
shift of multiplicity 1. Then T ∼ S.

Remark 7.13. For more information about which operators are or can be quasisimilar to the
unilateral shift, see [2,9,11,12,15,29] and the references therein.
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