454 research outputs found

    A G_2 Unification of the Deformed and Resolved Conifolds

    Get PDF
    We find general first-order equations for G_2 metrics of cohomogeneity one with S^3\times S^3 principal orbits. These reduce in two special cases to previously-known systems of first-order equations that describe regular asymptotically locally conical (ALC) metrics \bB_7 and \bD_7, which have weak-coupling limits that are S^1 times the deformed conifold and the resolved conifold respectively. Our more general first-order equations provide a supersymmetric unification of the two Calabi-Yau manifolds, since the metrics \bB_7 and \bD_7 arise as solutions of the {\it same} system of first-order equations, with different values of certain integration constants. Additionally, we find a new class of ALC G_2 solutions to these first-order equations, which we denote by \wtd\bC_7, whose topology is an \R^2 bundle over T^{1,1}. There are two non-trivial parameters characterising the homogeneous squashing of the T^{1,1} bolt. Like the previous examples of the \bB_7 and \bD_7 ALC metrics, here too there is a U(1) isometry for which the circle has everywhere finite and non-zero length. The weak-coupling limit of the \wtd\bC_7 metrics gives S^1 times a family of Calabi-Yau metrics on a complex line bundle over S^2\times S^2, with an adjustable parameter characterising the relative sizes of the two S^2 factors.Comment: Latex, 14 pages, Major simplification of first-order equations; references amende

    New G_2 metric, D6-branes and Lattice Universe

    Full text link
    We construct a new (singular) cohomogeneity-three metric of G_2 holonomy. The solution can be viewed as a triple intersection of smeared Taub-NUTs. The metric comprises three non-compact radial-type coordinates, with the principal orbits being a T^3 bundle over S^1. We consider an M-theory vacuum (Minkowski)_4\times M_7 where M_7 is the G_2 manifold. Upon reduction on a circle in the T^3, we obtain the intersection of a D6-brane, a Taub-NUT and a 6-brane with R-R 2-form flux. Reducing the solution instead on the base space S^1, we obtain three intersecting 6-branes all carrying R-R 2-form flux. These two configurations can be viewed as a classical flop in the type IIA string theory. After reducing on the full principal orbits and the spatial world-volume, we obtain a four-dimensional metric describing a lattice universe, in which the three non-compact coordinates of the G_2 manifold are identified with the spatial coordinates of our universe.Comment: Latex, 8 page

    Amplitudes in Pure Yang-Mills and MHV Diagrams

    Get PDF
    We show how to calculate the one-loop scattering amplitude with all gluons of negative helicity in non-supersymmetric Yang-Mills theory using MHV diagrams. We argue that the amplitude with all positive helicity gluons arises from a Jacobian which occurs when one performs a Backlund-type holomorphic change of variables in the lightcone Yang-Mills Lagrangian. This also results in contributions to scattering amplitudes from violations of the equivalence theorem. Furthermore, we discuss how the one-loop amplitudes with a single positive or negative helicity gluon arise in this formalism. Perturbation theory in the new variables leads to a hybrid of MHV diagrams and lightcone Yang-Mills theory.Comment: 31 pages, 4 figures. v2: references added, JHEP versio

    Notes on Equivalences and Higgs Branches in N=2 Supersymmetric Yang-Mills Theory

    Get PDF
    In this paper we investigate how various equivalences between effective field theories of N=2N=2 SUSY Yang-Mills theory with matter can be understood through Higgs breaking, i.e. by giving expectation values to squarks. We give explicit expressions for the flat directions for a wide class of examples.Comment: 11 pages, Late

    General Metrics of G_2 Holonomy and Contraction Limits

    Get PDF
    We obtain first-order equations for G_2 holonomy of a wide class of metrics with S^3\times S^3 principal orbits and SU(2)\times SU(2) isometry, using a method recently introduced by Hitchin. The new construction extends previous results, and encompasses all previously-obtained first-order systems for such metrics. We also study various group contractions of the principal orbits, focusing on cases where one of the S^3 factors is subjected to an Abelian, Heisenberg or Euclidean-group contraction. In the Abelian contraction, we recover some recently-constructed G_2 metrics with S^3\times T^3 principal orbits. We obtain explicit solutions of these contracted equations in cases where there is an additional U(1) isometry. We also demonstrate that the only solutions of the full system with S^3\times T^3 principal orbits that are complete and non-singular are either flat R^4 times T^3, or else the direct product of Eguchi-Hanson and T^3, which is asymptotic to R^4/Z_2\times T^3. These examples are in accord with a general discussion of isometric fibrations by tori which, as we show, in general split off as direct products. We also give some (incomplete) examples of fibrations of G_2 manifolds by associative 3-tori with either T^4 or K3 as base.Comment: Latex, 27 page

    Comments on gluon 6-point scattering amplitudes in N=4 SYM at strong coupling

    Full text link
    We use the AdS/CFT prescription of Alday and Maldacena \cite{am} to analyze gluon 6-point scattering amplitudes at strong coupling in N=4{\cal N}=4 SYM. By cutting and gluing we obtain AdS 6-point amplitudes that contain extra boundary conditions and come close to matching the field theory results. We interpret them as parts of the field theory amplitudes, containing only certain diagrams. We also analyze the collinear limits of 6- and 5-point amplitudes and discuss the results.Comment: 35 pages, 7 figures, latex, references adde

    BPS Geometries and AdS Bubbles

    Get PDF
    Recently, 1/2-BPS AdS bubble solutions have been obtained by Lin, Lunin and Maldacena, which correspond to Fermi droplets in phase space in the dual CFT picture. They can be thought of as generalisations of 1/2-BPS AdS black hole solutions in five or seven dimensional gauged supergravity. In this paper, we extend these solutions by invoking additional gauge fields and scalar fields in the supergravity Lagrangians, thereby obtaining AdS bubble generalisations of the previously-known multi-charge AdS black solutions of gauged supergravity. We also obtain analogous AdS bubble solutions in four-dimensional gauged supergravity. Our solutions generically preserve supersymmetry fractions 1/4, 1/8 and 1/8 in seven, five and four dimensions respectively. They can be lifted to M-theory or type IIB string theory, using previously known formulae for the consistent Pauli sphere reductions that yield the gauged supergravities. We also find similar solutions in six-dimensional gauged supergravity, and discuss their lift to the massive type IIA theory.Comment: Latex, 11 page

    Generating MHV super-vertices in light-cone gauge

    Full text link
    We constructe the N=1\mathcal{N}=1 SYM lagrangian in light-cone gauge using chiral superfields instead of the standard vector superfield approach and derive the MHV lagrangian. The canonical transformations of the gauge field and gaugino fields are summarised by the transformation condition of chiral superfields. We show that N=1\mathcal{N}=1 MHV super-vertices can be described by a formula similar to that of the N=4\mathcal{N}=4 MHV super-amplitude. In the discussions we briefly remark on how to derive Nair's formula for N=4\mathcal{N}=4 SYM theory directly from light-cone lagrangian.Comment: 25 pages, 7 figures, JHEP3 style; v2: references added, some typos corrected; Clarification on the condition used to remove one Grassmann variabl

    Consistent Sphere Reductions and Universality of the Coulomb Branch in the Domain-Wall/QFT Correspondence

    Get PDF
    We prove that any D-dimensional theory comprising gravity, an antisymmetric n-index field strength and a dilaton can be consistently reduced on S^n in a truncation in which just nn scalar fields and the metric are retained in (D-n)-dimensions, provided only that the strength of the couping of the dilaton to the field strength is appropriately chosen. A consistent reduction can then be performed for n\le 5; with D being arbitrary when n\le 3, whilst D\le 11 for n=4 and D\le 10 for n=5. (Or, by Hodge dualisation, nn can be replaced by (D-n) in these conditions.) We obtain the lower dimensional scalar potentials and construct associated domain wall solutions. We use the consistent reduction Ansatz to lift domain-wall solutions in the (D-n)-dimensional theory back to D dimensions, where we show that they become certain continuous distributions of (D-n-2)-branes. We also examine the spectrum for a minimally-coupled scalar field in the domain-wall background, showing that it has a universal structure characterised completely by the dimension n of the compactifying sphere.Comment: latex file, 21 pages, 1 figure, minor typo correction
    corecore