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ABSTRACT

We prove that any D-dimensional theory comprising gravity, an antisymmetric n-index

field strength and a dilaton can be consistently reduced on Sn in a truncation in which

just n scalar fields and the metric are retained in (D − n)-dimensions, provided only that

the strength of the couping of the dilaton to the field strength is appropriately chosen. A

consistent reduction can then be performed for n ≤ 5; with D being arbitrary when n ≤ 3,

whilst D ≤ 11 for n = 4 and D ≤ 10 for n = 5. (Or, by Hodge dualisation, n can be

replaced by (D−n) in these conditions.) We obtain the lower dimensional scalar potentials

and construct associated domain wall solutions. We use the consistent reduction Ansatz to

lift domain-wall solutions in the (D − n)-dimensional theory back to D dimensions, where

we show that they become certain continuous distributions of (D− n− 2)-branes. We also

examine the spectrum for a minimally-coupled scalar field in the domain-wall background,

showing that it has a universal structure characterised completely by the dimension n of

the compactifying sphere.

1 Research supported in part by DOE grant DOE-FG02-95ER40893

2 Research supported in part by DOE grant DOE-FG03-95ER40917

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/231869655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-th/0004201v2
http://arxiv.org/abs/hep-th/0004201


1 Introduction

The ability to embed a lower-dimensional theory in a higher-dimensional one has proved

to be an extremely useful one in string theory. One can, for example, re-interpret lower-

dimensional p-brane solitons as solutions of the ten-dimensional string, or eleven-dimensional

M-theory. A crucial aspect of this picture is that the Kaluza-Klein reduction must be a

consistent one, in the sense that all solutions of the lower-dimensional theory must also

be solutions of the original higher-dimensional theory. This consistency is guaranteed in a

standard toroidal reduction, but it is far less clear-cut when a reduction on a manifold such

as a sphere is considered.

Kaluza-Klein reductions on spheres are of great interest in the framework of string the-

ory, because they can give rise to lower-dimensional gauged supergravities that are relevant

for discussing the AdS/CFT correspondence [1, 2, 3]. The generic structure of these gauged

supergravities comprises gravity coupled to a set of Yang-Mills gauge fields, and a set of

scalar fields with a non-trivial potential, together, possibly, with additional antisymmetric

tensor fields. A particular class of solution that can be studied is extremal domain walls,

which can be viewed as charged black holes or black p-branes in the gauged theory, in

the extremal limit for which the electric or magnetic charges actually vanish. Thus these

solutions are supported entirely by the metric and certain scalar fields within the gauged

supergravity.

It therefore becomes of interest to study the circumstances under which a higher-

dimensional theory can admit a consistent n-sphere reduction in which just gravity and

appropriate scalar fields are retained. In some cases this may be viewed as a subset of a

larger consistent reduction of a gauged supergravity, in which the starting point is super-

gravity in ten or eleven dimensions. However, the question can also be posed in a more

general framework, where the starting point need not necessarily even be a supersymmetric

theory.

Before discussing the possible new cases, let us review what is known at present. It is

natural, when considering an n-sphere reduction, to try to retain all the SO(n + 1) Yang-

Mills fields as part of the consistent reduction. Usually, however, this is not possible. It

was recently shown in [4, 5] that the cases where this can be done, starting from a D-

dimensional theory of gravity, n-form field strength and dilaton, are as follows. One can

start with (D,n) = (11, 4), and reduce on S4 or S7 to seven or four dimensions respectively;

another possibility is to start from (D,n) = (10, 5), and reduce on S5 to five dimensions. In

these cases, the system has no dilaton. Including a dilaton, with a specific coupling, one can
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also start with n = 3 and D arbitrary, reducing on S3 or SD−3; or finally one can start with

n = 2 and D arbitrary, and reduce on S2. In all cases one must also include scalar fields Tij

in the reduction Ansatz, corresponding to the coset SL(n+1, IR)/SO(n+1). Additionally,

for the S4 reduction of D = 11 one must include five 3-form field strengths in the Ansatz,

while for the S7 reduction one must also include 35 more pseudoscalars.1 Finally, for the

S3 reduction in the n = 3 case, one must include a 3-form field strength in the reduction

Ansatz.

Our statement of the possible consistent reductions first specified that the SO(n + 1)

Yang-Mills gauge fields were to be included, and then we listed the additional fields that

would be needed for consistency. Another way of phrasing the question is to specify which

scalar fields will be included in the reduction Ansatz. In fact if we want to include all

the scalars Tij of the SL(n + 1, IR)/SO(n + 1) coset, the list of cases where consistent

reductions are possible will be the same as the above. The reason for this is that once all

the scalars Tij are present, they will act as sources for the Yang-Mills gauge fields, and so it

would be inconsistent to omit the Yang-Mills fields. However, if we settle for a reduction in

which fewer scalars are retained, it becomes possible to omit the Yang-Mills fields and this

opens up some further possibilities for consistent reductions, which we shall explore in this

paper. These reductions with scalars but no gauge fields will be sufficient for the purpose

of constructing the extremal domain-wall solutions in the lower dimension, and then lifting

them back to the higher dimension.

As mentioned above, if one includes the full set of scalars Tij in a truncation then they

will give rise to source terms that require the Yang-Mills fields to be non-zero. Specifically,

the source currents are of the form T−1
k[i ∂µ Tj]k, in the adjoint of SO(n + 1). If we make a

truncation where only the diagonal scalar fields are retained,

Tij = diag(X1,X2, . . . Xn+1) , (1)

then the currents T−1
k[i ∂µ Tj]k will be zero, and thus there is no longer any necessity to include

the gauge fields in a consistent truncation. This actually allows a somewhat extended set

of (D,n) values for which consistent reductions can be achieved, which includes cases that

would not allow consistent reductions with SO(n + 1) gauge fields. The allowed cases are

detailed below.

1In fact the consistent reductions from D = 11 require, in addition, the inclusion of the FFA in the

Lagrangian that arises in D = 11 supergravity. In the S
5 reduction from D = 10, it is necessary to impose

the requirement of self-duality on the 5-form field strength.
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In section 2 we construct an Ansatz for the n-sphere reduction of the a D-dimensional

theory of gravity, an n-form field strength, and a dilaton, in which the lower-dimensional

fields comprise just gravity and the diagonal scalar fields given by (1). We obtain a com-

plete proof of the consistency of this Kaluza-Klein reduction, showing that it works in all

cases where the strength of the coupling of the dilaton to the n-form in D dimensions is

appropriate. This requirement on the coupling is a rather stringent one, and the allowable

cases turn out to be {n = 5,D ≤ 10}; {n = 4,D ≤ 11}; and n ≤ 3 with D arbitrary, for

n ≤ D/2.

In section 3 we construct (n+1)-parameter extremal domain-wall solutions in the lower-

dimensional theories of gravity plus scalar fields, and then make use of the reduction Ansatz

derived in section 2 in order to lift these solutions back to the original D-dimensional

theory. We show that in the higher dimension the lifted solutions admit an interpretation

as continuous distributions of (D − n − 2)-branes. We discuss and obtain the distribution

functions. We obtain the metric of the distributed branes in the dual frame, and show that

the structure of these metrics depends only on the dimension n of the internal sphere, but

is independent of D. In particular, the metric in the dual frame becomes asymptotically

AdS×Sn for n 6= 3, and Minkowski×S3 for n = 3.

In section 4 we analyse the spectrum of excitations of a minimally-coupled scalar in

the background of the (D − n)-dimensional domain-wall solution, showing that it has a

universal structure that is characterised by the dimension n of the internal sphere used in

the dimensional reduction. In the case of the vacuum solutions, where the (n+1) parameters

in the general solutions are all set to zero, the scalar wave equation can be solved explicitly,

allowing a study of the singularity structure. We also analyse the Schrödinger potentials

for generic cases, allowing us to determine the structures of the spectra in the various cases.

In an appendix, we show that a single-charge rotating p-brane in a generic dimension

can be dimensionally reduced on the internal (distorted) n-sphere to give rise to domain-

wall black holes with [(n + 1)/2] electric U(1) charges. In the extremal limit, the gauge

fields vanish and the balck hole becomes a domain wall that is contained within the set of

solutions obtained in this paper.

2 Kaluza-Klein sphere reduction

Single-charge p-branes in supergravity theories inD dimensions can be classified as solutions

of the theory described by the Einstein-Hilbert action coupled to a dilaton and an n-form
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field strength,

LD = R̂ ∗̂1l− 1
2 ∗̂dφ̂ ∧ dφ̂− 1

2 e
aφ̂ ∗̂F̂(n) ∧ F̂(n) , (2)

where the constant a is given by [6]

a2 = 4− 2(n− 1)(D − n− 1)

D − 2
. (3)

The requirement that a be real puts a strong condition on the possible values for n, bearing

in mind that we must have n ≤ D, and in fact we can always choose a dualisation for F(n)

for which n ≤ D/2. From (3), it then follows that the maximum value for n ≤ D/2 is

5. Whe n = 5, the maximal dimension is D = 10, corresponding to the self-dual 5-form

in the type IIB theory. For n = 4, the maximal dimension is D = 11, corresponding to

11-dimensional supergravity. In both cases, the constant a vanishes. For n = 0, 1, 2, 3, the

dimension D can be arbitrary. Note that for a given n satisfying (3), n′ = D − n satisfies

it too. To summarise, the allowed possibilities are

n = 5 , D − 5 : D ≤ 10

n = 4 , D − 4 : D ≥ 11

n = 0, 1, 2, 3 , D,D − 1,D − 2,D − 3 : D arbitrary . (4)

Note that these results come from the requirement only that a must be real. If in addition

we require that the Lagrangian must be associated with a supersymmetric theory, we get

the further restriction that the dimension D must be less than or equal to eleven or ten.

The p-branes for which the first term on the right-hand-side of (3) is 4 can be viewed

as the basic building blocks for p-brane solitons. The p-branes with values other than 4,

(usually 4/N with N an integer) can be viewed as bound states or intersections of these

building blocks. For example, for D = 11 and D = 10, our discussion applies to M-branes,

the NS-NS string and 5-brane and all the D-branes.

We shall now consider the Kaluza-Klein dimensional reduction of the Lagrangian (2)

on Sn. (The discussion of the reduction instead on SD−n can be handled by dualising the

n-form field strength to a (D − n)-form.) In general, such a reduction is inconsistent if

we keep all the massless fields. It was shown [4], however, that for n = 2 and n = 3 the

reduction is always consistent, provided that (3) is satisfied. For n = 5 and n = 4, the

reduction is consistent only if additional conditions are satisfied, namely self-duality of the

5-form in D = 10, and the addition of an FFA term in D = 11 for the n = 4 case.

In this paper, we shall truncate further to a subset of the massless fields, corresponding

to “diagonal inhomogeneous distortions” of the internal Sn metric. By this, we mean that
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we canonically embed the sphere Sn in n+ 1 dimensional Euclidean space. The round Sn

metric is given by dµidµi, where µi are Euclidean coordinates satisfying the unit-length

constraint µi µi = 1. The diagonal inhomogeneous distortion of the sphere is then achieved

by introducing (n+ 1) scalars Xi, and scaling the coordinate differentials as follows:

ds2n =
∑

i

X−1
i (dµi)

2 . (5)

We shall show that for this subset of fields, the Kaluza-Klein reduction is consistent for any

of the D and n values listed in (4), provided that (3) is satisfied.

We find that the Kaluza-Klein reduction Ansatz is given by

dŝ2D = Y
1

D−2

(
∆

n−1
D−2 ds2D−n + g−2 ∆

− (D−n−1)
(D−2)

n+1∑

i=1

X−1
i (dµi)

2
)
,

e−
2
a
φ̂ = ∆−1 Y

2(D−n−1)

a2(D−2) , (6)

F̂(n) = g−n+1 ∆−2 U W + g−n+1 ∂ν
(Xi µ

i

∆

)
dxν ∧ Zi .

where

µiµi = 1 , Y =
∏

Xi , ∆ =
∑

Xi µ
2
i , U = 2

∑

i

X2
i µ

2
i −∆

∑

i

Xi . (7)

The quantities W and Zi are respectively the volume-form on the n-sphere, and a certain

(n− 1)-form on the n-sphere:

W =
1

n!
ǫij1···jnµ

i dµj1 ∧ · · · ∧ dµjn , (8)

Zi =
1

(n− 1)!
ǫij1···jn µ

j1 dµj2 ∧ · · · ∧ dµjn .

We find after some algebra that the dual of the field strength F(n) is given by

eaφ̂ ∗̂F(n) = g U ǫD−n +
1

2g
X−1

i ∗dXi ∧ d(µ2i ) . (9)

We can then substitute the Ansatz into higher dimensional equations of motion. First,

we can verify that the Ansatz for F̂(n) in (6) satisfies the Bianchi identity dF̂(n) = 0. Next,

we look at the equations of motion for the field strength F̂(n) and the dilaton φ̂:

d
(
eaφ̂ ∗̂F̂(n)

)
= 0 ,

(−1)D d∗̂dφ̂ = −a eaφ̂ ∗̂F̂n ∧ F̂(n) . (10)

After a considerable amount of algebra, we find that the Ansatz yields a consistent dimen-

sional reduction of these D-dimensional equations to give the following (D−n)-dimensional
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equations for the scalar fields:

(−1)D−n d(X̃−1
i ∗dX̃i) = −2g2 Y

2
n+1

[
2X̃2

i − X̃i

∑

j

X̃j − 2
n+1

∑

j

X̃2
j + 1

n+1 (
∑

j

X̃j)
2
]
ǫD−n ,

(−1)D−n 2(D−n−2)
(D−2) a2

d(Y −1 ∗dY ) = −V ǫD−n . (11)

Here, we have defined the rescaled fields X̃i by

Xi = Y
1

n+1 X̃i , (12)

so that
∏

i X̃i = 1, and the potential V is defined by

V ≡ 1
2g

2
(
2
∑

i

X2
i − (

∑

i

Xi)
2
)
= 1

2g
2 Y

2
n+1

(
2
∑

i

X̃2
i − (

∑

i

X̃i)
2
)
. (13)

Finally, to check the higher-dimensional Einstein equations, we need first to calculate the

Ricci tensor for the metric in (6). This is most easily done by noting that it is conformally

related to the metric

ds̄2D = ∆p ds2D−n +∆−q
∑

i

X−1
i (dµi)

2 , (14)

with

dŝ2D = e2f ds̄2D , (15)

where we have defined

e2f = Y
1

D−2 , p =
n− 1

D − 2
, q =

D − n− 1

D − 2
. (16)

It is easy to establish the standard result that the coordinate-frame components of the Ricci

tensor R̂MN for the metric dŝ2D are related to the coordinate-frame components R̄MN for

the metric ds̄2D by

R̂MN = R̄MN + (D − 2)
(
∂Mf ∂Nf − ∇̄M ∂N f − ḡPQ (∂P f)(∂Qf) ḡMN

)
− ¯ f ḡMN . (17)

Results for the Ricci tensor for certain metrics of the form (14) were derived in [7], and

with minor modifications they can be carried over to our present case. They were obtained

in a basis where one of the (n + 1) coordinates µi, say µ0, is expressed in terms of the n

remaining ones µα by using the relation µi µi = 1. Thus the components gαβ of the distorted

n-sphere metric (5), and its inverse, are given by

gαβ = Xα δαβ +X−1
0 µ̂α µ̂β ,

gαβ = Xα δαβ −∆−1XαXβ µα µb , (18)
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where in the first line we are writing µ̂α = µα/µ0. We refer to [7] for many of the details

of the curvature calculations. Combining these results with (17), we obtain, after exten-

sive algebraic manipulations, the following expressions for the lower-dimensional spacetime,

internal and mixed components of the D-dimensional Ricci tensor:

R̂µν = Rµν − (n−1)(D−n−1)
4(D−2) ∆−2 ∂µ∆ ∂ν∆− 1

2p∆
−1 ∆ gµν +

1
2p∆

−2 ∂λ∆ ∂λ∆ gµν

−1
4X

−2
i ∂µXi ∂νXi +

1
2∆

−1X−1
i µ2i ∂µXi ∂νXi +

1
4(D−2) Y

−2 ∂µY ∂νY

−1
4q∆

−1 (∂µ∆ ∂νY + ∂ν∆ ∂µY )− 1
2(D−2) log Y gµν

−p
(∑

i

X2
i −∆−1X2

i µ
2
i

∑

j

Xj + 2∆−2 (X2
i µ

2
i )

2 − 2∆−1X3
i µ

2
i

)
gµν ,

R̂αβ = Rαβ + 1
2q gαβ ∆

−2 ∆− 1
2q gαβ ∆

−3 ∂λ∆ ∂λ∆− 1
2∆

−1 gαβ (19)

+1
2∆

−1 gγδ ∂λgαγ ∂
λgβδ − 1

4∆
−2 ∂α∆ ∂β∆− 1

2∆
−1∇α∂β ∆

−1
4q gαβ ∆

−2 ∂γ∆ ∂γ∆+ 1
2q gαβ ∆

−1∇γ∂
γ ∆− 1

2(D−2) ∆
−1 log Y gαβ ,

R̂αµ = −1
2∆

−2 U (X−1
α ∂µXα −X−1

0 ∂µX0)µα + 1
8a

2∆−2 ∂µ∆ ∂a∆− 1
4q∆

−1 Y −1 ∂µY ∂α∆ .

Note that here we are using a “generalised” summation convention in which summations

over the i index, where not otherwise indicated, are understood. The operator denotes

the d’Alembertian calculated in the lower-dimensional metric gµν , and Rαβ denotes the

Ricci tensor of the internal metric (i.e. the Ricci tensor for the metric (5), with the Xi are

treated as parameters independent of the internal coordinates).

The D-dimensional Einstein equation reads R̂MN = ŜMN , where

ŜMN = 1
2∂M φ̂ ∂N φ̂+

ea φ̂

2(D − n− 1)!

(
F̂ 2
MN − D − n− 3

(D − n)(D − n− 1)
F̂ 2 ĝMN

)
. (20)

After some algebra we find that ŜMN is given by

Ŝµν = 1
2∆

−1 µ2i X
−1
i ∂µXi ∂νXi − (n−1)(D−n−1)

4(D−2) ∆−2 ∂µ∆ ∂ν∆+ (D−n−1)2

2a2 (D−2)2
Y −2 ∂µY ∂νY

−1
4q∆

−1 Y −1 (∂µ∆ ∂νY + ∂ν∆ ∂µY )

−1
2p∆

−2
(
U2 − ∂λ∆ ∂λ∆+∆µ2i X

−1
i ∂λXi ∂

λXi

)
gµν ,

Ŝαβ = 1
2q∆

−3 U2 gαβ + 1
2q∆

−2 gαβ X
−1
i µ2i ∂λXi ∂

λXi − 1
2q∆

−3 ∂λ∆ ∂λ∆ gαβ

−1
2∆

−2 (X−1
α ∂λXα −X−1

0 ∂λX0)(X
−1
β ∂λXβ −X−1

0 ∂λX0)µα µβ

+1
8a

2∆−2 ∂α∆ ∂β∆ , (21)

Ŝαµ = −1
2∆

−2 U (X−1
α ∂µXα −X−1

0 ∂µX0)µα + 1
8a

2 ∂µ∆ ∂α∆− 1
4q∆

−1 Y −1 ∂µY ∂α∆ .

After making use of the already-established equations of motion for the scalar fields, we

eventually find after considerable further algebra that the R̂µν = Ŝµν components of the
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higher-dimensional Einstein equation imply

Rµν = 1
4X̃

−2
i ∂µX̃i ∂νX̃i +

2(D−n−2)
(D−2)(n+1) a2

Y −2 ∂µY ∂νY + 1
D−n−2 V gµν . (22)

The full system of (D − n)-dimensional equations of motion can therefore be derived from

the Lagrangian

L = R ∗1l− 2(D−n−2)
(n+1)(D−2) a2

Y −2 ∗dY ∧ dY − 1
4

∑

i

X̃−2
i ∗dX̃i ∧ dX̃i − V ∗1l . (23)

It remains to check the consistency of the other components of the D-dimensional Ein-

stein equations. After making use of the lower-dimensional equations of motion for the

scalar fields, we find that the internal components R̂αβ of the higher-dimensional Ricci ten-

sor agree precisely with the expression for Ŝαβ that follows from substituting the Ansäze for

F̂(n) and φ̂, given in (6), into (21). Again, we have made extensive use of formulae derived

in [7], appropriately modified to the case under consideration here. Finally, we note that

the mixed components R̂αµ in (19) agree precisely with the mixed components of Ŝαµ given

in (21).

With these calculations we have now obtained a complete and explicit proof that the

Ansatz (6) yields a consistent Kaluza-Klein n-sphere reduction of the D-dimensional theory

described by (2), with the lower-dimensional fields appearing in the Ansatz satisfying the

equations of motion that follow from the (D − n)-dimensional Lagrangian (23).

3 Domain walls as distributions of p-branes

We find that the d-dimensional gravity/scalar Lagrangian (23) admits a domain wall solu-

tion, given by

ds2d = (gr)
a
2(D−2)
2(d−2)

(
(gr)n−3 h

1
2(d−2) dxµdxµ + h

− d−3
2(d−2)

dr2

g2r2

)
,

Xi = (gr)
a2(D−2)
4(d−2) h

(d−3)
4(d−2) H−1

i , (24)

where

h ≡
n+1∏

i=1

Hi , Hi = 1 +
ℓ2i
r2
. (25)

In fact there is a redundancy in the paramtrisation of these solutions, which can be seen

as follows. We make the following transformation of the radial coordinate,

r2 = R2 − L2 , (26)
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where L is a constant, and define new quantities as follows:

H̃i ≡ 1 +
ℓ̃2i
R2

, h̃ ≡
n+1∏

i=1

H̃i , ℓ̃2i ≡ ℓ2i − L2 . (27)

After straightforward calculations, we find that the solution (24) becomes

ds2d = (gR)
a
2(D−2)
2(d−2)

(
(gR)n−3 h̃

1
2(d−2) dxµdxµ + h̃

− d−3
2(d−2)

dR2

g2R2

)
,

Xi = (gR)
a2(D−2)
4(d−2) h̃

(d−3)
4(d−2) H̃−1

i , (28)

This is identical in form to the original solution (24), but with the redefined functions given

in (27). Let us suppose that, without loss of generality, the parameters ℓi are ordered so

that ℓ21 ≥ ℓ22 ≥ · · · ≥ ℓ2n+1. If we choose the constant L in the coordinate transformation

(26) to be equal to ℓn+1, then we see that the original solution with (n + 1) parameters

ℓi (with 1 ≤ i ≤ n + 1) is really nothing but a solution with only n parameters ℓ̃2i (with

1 ≤ i ≤ n).

When a = 0, which occurs for the cases (D,n) = (11, 4), (11, 7) and (10, 5), the resulting

solutions become AdS domain walls. The metrics in these cases become asymptotically-AdS

spacetimes in seven, four and five dimensions. These AdS domain-wall solutions are sphere

reductions of the decoupling limits of ellipsoidal distributions of M-branes and D3-branes.

These cases (and subsets) were studied previously in [8, 9, 10, 11, 12, 13].

In this paper, we shall extend the previous analysis to include the cases where the

dilaton-coupling constant a is non-vanishing. For these cases, the domain-wall metric (24)

is no longer asymptotically AdS, but instead is asymptotic to a vacuum domain wall as

r → ∞, given by

ds2d = ρ
4(n+1)

a2(D−2) dxµ dxµ + g−2 dρ2 . (29)

where ρ ∼ (gr)
a
2(D−2)
4(d−2) . This metric is flat as ρ approaches at infinity.

In the region near r = 0, the metric structure depends on the number of non-vanishing

parameters ℓi. If k of the ℓi are non-vanishing, we have

ds2d = ργ dxµdxµ + dρ2 , (30)

where

γ =
4(n+ 1− k)

a2(D − 2) + 2(d− 3)k
, ρ = (gr)

a
2(D−2)+2(d−3)k

4(d−2) . (31)

Thus we see that at r = 0 = ρ, the solution is generic singular. To see if the singularity is

naked or not, we evaluate

γ − 2 =
4(d − 2)(n − 3− k)

a2(D − 2) + 2(d− 3)k
. (32)
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Thus for n = 0, 1, 2, 3, the solution has a naked singularity for all values of k. For n ≥ 4,

the singularity is naked for k > n− 3, but marginal for k ≤ n− 3.

If we oxidise the solution back to D dimensions, it acquires an interpretation as a

continuous distribution of (D − n− 2)-branes, given by

ds2D = H
− n−1
D−2 dxµdxµ +H

D−n−1
D−2 dymdym ,

e−
2
a
φ = H . F(n) = e−aφ∗̂(dD−n−1x ∧ dH−1) . (33)

where H and the transverse Euclidean metric are given by

dymdym = h−
1
2 ∆̃ dr2 + r2

∑
Hi dµ

2
i ,

H =
1

(gr)n−1 ∆̃
, ∆̃ = h

1
2
∑ µ2i

Hi
. (34)

The function H is a harmonic function of the Euclidean transverse space, and it can be

expressed as

H = g−(n−1)
∫
σ(~y ′) dn+1y′

|~y − ~y ′|n−1
, (35)

where σ(~y) is the distribution function. The harmonic functions in our cases here are

associated with ellipsoidal distributions.

A detailed analysis is given in [12], where the charge-distribution functions are obtained

in the non-dilatonic cases of 3-branes in D = 10, and M2-branes and M5-branes in D = 11.

The analysis here is almost identical, and we shall not enumerate all the possibilities. It was

observed in [12] that although the results for the charge-distribution functions are distinctly

different depending upon how many of the ℓi parameters are non-zero, by carefully taking

limits in which some of the parameters are sent to zero one can view them all as being derived

from a maximally-degenerate case with all (n + 1) parameters non-zero. The distribution

function with all the ℓi non-vanishing is given by [12]

σn+1 =
1

Vn
∏n+1

i=1 ℓi
δ′(1−

n+1∑

i=1

y2i
ℓ2i

) , (36)

where Vn is the volume of the n-sphere and ′ refers to the derivative with respect to the

δ-function argument. This same charge distribution arises in our present cases, too.

As an example, let us consider what happens if one of the parameters, say ℓn+1 is sent to

zero. It is clear from (36) that the integration in (35) over the associated direction y′n+1 will

become dominated by the contribution from y′n+1 close to zero, and so the (n+1)-parameter

charge distribution σn+1 in the ℓn+1 −→ 0 limit will become the n-parameter distribution

σn(y1, . . . , yn+1) = δ(yn+1)

∫ ∞

−∞
dỹn+1 σn+1(y1, . . . , yn, ỹn+1) . (37)
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Evaluating the integral, we obtain

σn =
1

2Vn
∏n

i=1 ℓi

(
2(1−

n∑

i=1

y2i
ℓ2i

)−1/2 δ(1−
n∑

i=1

y2i
ℓ2i

)− (1−
n∑

i=1

y2i
ℓ2i

)−3/2 Θ(1−
n∑

i=1

y2i
ℓ2i

)
)
δ(yn+1) .

(38)

Sending another parameter, say ℓn to zero, we next obtain the (n−1)-parameter charge

distribution

σn−1 =
π

Vn
∏n−1

i=1 ℓi
δ(1 −

n−1∑

i=1

y2i
ℓ2i

) δ(2)(yn, yn+1) . (39)

Further details of the successive results for smaller numbers k of non-vanishing parameters

ℓi are given in [12]. Note that the distributions associated with k = n + 1 and k = n

non-vanishing ℓi parameters both have regions with negative as well as positive p-brane

tensions. For k ≤ n− 1, on the other hand, the distributions contain only positive tensions.

When all the parameters ℓi vanish, corresponding to the “vacuum” domain-wall solution

in d = D−n dimensions, the D-dimensional solution describes coincident (D−n−2)-branes

at the origin, with the constant 1 in the harmonic function H dropped. This can be viewed

as a certain decoupling limit. The metric of the solution in the Einstein frame can then be

expressed as

ds2E = e
a

n−1
φ
(
rn−3 dxµdxµ +

dr2

r2
+ dΩ2

n

)
. (40)

One can then define a dual frame ds2dual = e−aφ/(n−1) ds2E, in which the Lagrangian becomes

L = e e
a(D−2)
2(n−1)

φ
(
R+ (D−2)(n2−nD−n+3D−2)

2(n−1)2
(∂φ)2 − 1

2n! F
2
(n)

)
. (41)

In this dual frame, the metric is AdS×Sn if n 6= 3, and Minkowski×S3 when n = 3. This

analysis was given in detail in [14] for D = 10, leading to the conjecture of a Domain-

wall/QFT correspondence. Further studies of the Domain-wall/QFT correspondence in

general dimensions were given in [15].

It is of interest to note that in the dual frame, the metric depends only on the dimension

n of the internal sphere, but it is independent of D; the D-dependence of the Einstein-

frame metric can all extracted as a conformal factor. Note that the dual frame metric has

qualitative differences in the three situations n > 3, n = 3 and n < 3. For n = 3, the

dual frame is Minkowskian, whilst for n 6= 3, the spacetime is AdS. However, for n > 3 we

have that r = 0 is the horizon, whilst for n < 3 the horizon is instead at r = ∞. These

qualitative differences have significance for the structure of the spectrum in the dual QFT,

which we shall analyse in the next section.

When the ℓi parameters are non-vanishing, the metric of the distributed branes in the
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dual frame is given by

ds2dual = ∆̃
n−3
n−1 ds2d + g−2 ∆̃

2
n−1

∑
H2

i dµ
2
i , (42)

where

ds2d = (gr)n−3 dxµdxµ +
dr2

(gr)2 h
1
2

. (43)

Again we see that the metric does not manifestly depend on D, but on n instead.

4 Analysis of the spectrum

A minimally-coupled scalar field Φ obeys the wave equation

∂µ(
√−g gµν ∂νΦ) = 0 . (44)

We make the Ansatz Φ = eip·x χ(r), wherem2 = −p·p determines the mass of the fluctuating

mode, and so the wave equation has the following general form

r−1∂r
[
r−1

n+1∏

i=1

√
r2 + ℓ2i ∂rχ

]
= −Qχ , (45)

where Q = m2 g−
1
2 (n+1). Remarkably, the wave equation depends only on the dimension of

the internal sphere, but otherwise is independent of details of the original higher-dimensional

theory.

It is helpful to cast the wave equation into the Schrödinger form, which can be done by

first writing the metric in a manifestly conformally-flat frame as

ds2 = e2A(z) (dxµ dxµ + dz2) , (46)

by means of an appropriate coordinate transformation. The coordinate z runs from 0 to z∗,

and A(z) has the following asymptotic behaviour:

e2A ∼ (z − z∗)γ
∗

, γ∗ = − 2(n + 1)

(d− 2)(n − 3)
for z → z∗ ,

e2A ∼ zγ̃ , γ̃ =
2γ

2− γ
= − 2(n+ 1− k)

(d− 2)(n − 3− k)
, for z → 0 . (47)

Making the field redefinition χ = e−(D−2)A/2 ψ, the wave equation assumes the form

(−∂2 − V )ψ = 1
4Qψ , (48)

with the Schrödinger potential given by

V =
d− 2

2
A′′ +

(d− 2)2

4
(A′)2 . (49)
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The asymptotic behavior of the potential is given by

V ∼ c∗

(z − z∗)2
, for z → z∗ ,

V ∼ c

(z − z̃)2
, for z → z̃ , (50)

where

c∗ = −1
4 +

(n− 1)2

(n− 3)2
, c = −1

4 +
(n− 1− k)2

(n− 3− k)2
≥ −1

4 . (51)

The range of the coordinate z is determined by the values of z∗ and z̃, which in the original

coordinate r correspond to r → ∞ and r → 0 limit, respectively. It is understood that if

z∗ or z̃ equals ±∞, the potential in (50) is of the form ±1/z2.

Note that for n ≤ 3 [n ≥ 4] the limit r → ∞ corresponds to z → z∗ with z∗ = ∞
[z∗ = finite]. On the other hand for n − k ≤ 3 [n − k ≥ 4] the limit r → 0 corresponds

to z → z̃ where z̃ = 0 [z̃ = −∞]. When n = 3 or k = n − 3, where the denominator

of the above expression vanishes, the coordinate z depends logarithmically on the original

coordinate r (z ∼ log(r)) and the Schrödinger potential becomes constant: V = 1/4.

Note that since the wave equation is independent of D, whilst the metric depends on D,

it may be more instructive to perform a field redefinition directly on the wave equation (45).

This can be done by first defining y = r2, and then introducing a new coordinate z defined

by ∂y/∂z =
√
f(y), where f(y) = [

∏n+1
i=1 (y+ ℓ

2
i )]

1/2. (These are the defining equations that

relate z and r coordinates.) The Schrödinger potential is then given by [12]

V = 1
4∂

2
z log f + 1

16 (∂z log f)
2 . (52)

and it clearly depends on n and ℓi (i = 1, · · · , k) only.

4.1 Vacuum excitations

When all the parameters ℓi vanish, the solution (24) becomes a domain-wall vacuum solu-

tion. In the case when a2 = 0, which occurs for (D,n) = (11, 7), (10, 5) and (11, 4), the

solution is just the AdS spacetime in d = 4, 5 and 7 respectively. For a2 6= 0, the metric of

the solution is (30). The metric is flat near ρ = ∞, but becomes singular as ρ approaches

zero. Since we have
4(n+ 1)

a2(D − 2)
− 2 =

4(d − 2)(n− 3)

a2(D − 2)
, (53)

the singularity is marginal for n ≥ 3, but naked for n < 3.

The characteristics of the Schrödinger potential depend only the value of n. For n =

0, 1, 2, the potential is given by

V =
c∗

z2
, (54)
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where c∗ is given in (51). The coordinate z runs from 0 to infinity as r runs from 0 to

infinity. For n = 3, the potential is a constant, V = 1/4, and the coordinate z runs from

minus infinity to infinity as r runs from 0 to infinity. For n ≥ 4, the potential is of the same

form as (54), but the coordinate z now runs from minus infinity to 0 as r runs from 0 to

infinity. Thus we see that although the domain-wall vacuum can have (naked) singularities,

the quantum fluctuations are nevertheless well behaved. In fact it is straightforward to

solve the minimally-coupled scalar wave equation in the domain-wall vacuum, namely

r−1∂r(r
n ∂rχ) = −Qχ . (55)

If we define a new dependent variable y by

χ(r) = y(r) r−(n−1)/2 , (56)

and change to the new independent variable z defined by

z =
2
√
Q

n− 3
r−(n−3)/2 , (57)

then the wave equation (55) becomes the Bessel equation

z2 y′′(z) + z y′(z) + (z2 − ν2) y(z) = 0 , (58)

where

ν =
n− 1

n− 3
. (59)

The solutions to (55) are therefore given by

χ(r) = a r−(n−1)/2 Jν
( 2

√
Q

n− 3
r−(n−3)/2

)
+ b r−(n−1)/2 Yν

( 2
√
Q

n− 3
r−(n−3)/2

)
. (60)

A special case arises for n = 3 (the Schrödinger potential is constant, V = 1/4, there) for

which we find

χ(r) = a r−1+i
√
Q−1 + b r−1−i

√
Q−1 . (61)

The requirement that Q ≥ 1 corresponds to the condition that there is an energy gap.

4.2 Domain-wall excitations

When some of the ℓi parameters are non-vanishing, the wave equations cannot in general be

solved explicitly. Here, for simplicity, we shall consider the case where all the non-vanishing

ℓi are equal. There are certain examples where the wave equations can be solved exactly.

Two of these (n = 5, k = 2 with two equal charges ℓi, and n = 5, k = 4 with four equal

14



charges) are solved in [9]. Another solvable example is n = 3, k = 2, with the two non-

vanishing charges equal, say ℓ1 = ℓ2 ≡ ℓ. In this case, if we let x = −r2/ℓ2, equation (45)

becomes the hypergeometric equation

x(1− x)χ′′ + (1− 2x)χ′ − 1
4Qχ = 0 , (62)

and so one solution gives

χ1 = 2F1[a, b; 1;−
r2

ℓ2
] , a = 1

2 +
i
2

√
Q− 1 , b = 1

2 − i
2

√
Q− 1 . (63)

Note again that Q > 1 corresponds to the condition that the (continuous) spectrum has a

gap owing to the properties of the Schrödinger potential V ≥ 1/4 (figure g). Note that at

small r we therefore have χ1 ∼ 1, while at large r the asymptotic behaviour is of the same

form as in (61). Since the c argument of the hypergeometric function 2F1[a, b; c;x] in (63) is

an integer, the second solution χ2 of (62) must be obtained by taking an appropriate limit

of the standard second solution x1−c
2F1[a−c+1, b−c+1; 2−c;x]. This gives a logarithmic

behaviour of the form χ2 ∼ log r at small r.

For the remaining examples, although we cannot solve the wave equation analytically

we can determine the structure of the spectra for the various cases from the forms of their

Schrödinger potentials. The results are summarised in Table 1.

n k z-range V type Spectrum

0,1 0,1 (0,∞) a continuous

2 0 (0,∞) b continuous

1,2 (0,∞) c continuous

3 0 (−∞,∞) V = 1
4 cont. with gap

1 (0,∞) d disc., cont. with gap

2,3 (0,∞) e cont. with gap

≥ 4 ≤ n− 4 (−∞, 0) f continuous

n− 2 (−∞, 0) g cont. with gap

n− 3 (−1, 0) h discrete

n, n− 1 (−1, 0) i discrete

Table 1: Spectral analysis for domain-wall solutions for various n’s and k’s.

The various different types of structures of the potentials are sketched in Figure 1.

15



a b c

d e f

g h i

Figure 1: Sketches of the various Schrödinger potentials

5 Conclusions

In this paper we have studied consistent n-sphere reductions of a D-dimensional theory of

gravity coupled to an n-form field-strength and a dilaton. Provided that the dilaton has a

specific strength of coupling to the n-form, given by (3), we have proven the consistency of

the non-linear Kaluza-Klein Ansatz for the n-sphere reduction in which there are n scalars

parameterising right-ellipsoidal inhomogeneous deformations of the sphere.2

2We did not turn on the Kaluza-Klein gauge-fields in the reduction, which corresponds to a consistent

truncation of the theory. However in the appendix we also discuss an n-sphere reduction of this Lagrangian

that corresponds to making pair-wise identifications of the diagonal scalar fields, together with turning

on the electric components of the Abelian Kaluza-Klein fields. This reduction provides a D-dimensional

embedding of the (D − n)-dimensional non-extreme (large) charged-black holes as (near-extreme) spinning

electric (D − n − 2)-branes. In the BPS limit the charged black holes become neutral BPS domain-wall
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The generality of these consistent reductions provides a framework within which we

can address the D-dimensional embedding of a class of solutions of the reduced gauged

supergravities in d = D − n dimensions. In general, these gauged supergravities have

potentials for the scalar fields that do not admit AdS ground-states, and thus in general,

the typical solutions correspond to domain walls that are asymptotic to the “dilatonic”

vacuum. In particular, we found the general class of BPS domain-wall solutions that are

specified by k = {1, · · · , n} parameters, which characterise the harmonic functions of k

non-trivial scalars.

All these solutions have explicit representations as continuous distributions of extremal

(D− n− 2)-branes, and thus in the context of the Domain-wall/QFT correspondence they

describe the Coulomb phase of the dual strongly-coupled field theory.

The universal properties of these gravity solutions manifest themselves in the properties

of the wave equations in these backgrounds. For minimally-coupled scalars, the wave equa-

tions are completely universal and depend only on the dimension n of the compactifying

sphere and the number k of parameters in the harmonic functions specifying the non-trivial

scalar fields. Remarkably, the wave equations are independent of the original dimension D.

Thus in the dual field theory the bound-state spectrum is completely specified by n and k.

We gave an analysis of the spectra for all these cases.

One of the interesting outcomes of our study is the generality and universality of the BPS

solutions for the specific subsector of the sphere-reduced gravity theories. This provides a

strong indication that the dual field theories should exhibit the same intriguing features,

irrespective of the dimension.

Acknowledgments

We should like to thank K. Skenderis for a useful discussion. C.N.P. would like to thank

High Energy Theory Group at Penn for hospitality.

A Single-charge rotating p-branes

The Lagrangian (2) also admits rotating p-brane solutions. In this appendix, we show that

such a rotating p-brane associated with a given by (3) can be dimensionally reduced on

the transverse spherical space, and it then gives rise to a domain-wall black hole in the

lower dimension. The Lagrangian (2) admits an electric (d− 1)-brane with d = n− 1, or a

solutions.

17



magnetic (d − 1)-brane with d = D − n − 1. We shall consider only the magnetic solution

here, since the electric one can be viewed as a magnetic solution of the dual (D − n)-form

field strength F(D−n). There are two cases arising, depending on whether d̃ is even or odd.

Case 1: n = 2N − 1

In this case, there are N angular momenta ℓi, with i = 1, 2, . . . , N . We find that the

metric of the rotating (n− 2)-brane solution to the equations following from (2) is [16]

ds2D = H
− n−1
D−2

(
− (1− 2m

rn−1∆
) dt2 + d~x · d~x

)
+H

D−n−1
D−2

[ ∆ dr2

H1 · · ·HN − 2m
r−(n−1)

+r2
N∑

i=1

Hi(dµ̃
2
i + µ̃2i dφ

2
i )−

4m coshα

rn−1H∆
dt (

N∑

i=1

ℓi µ̃
2
i dφi)

+
2m

rn−1H∆
(
N∑

i=1

ℓi µ̃
2
i dφi)

2
]
, (64)

where the functions ∆, H and Hi are given by

∆ = H1 · · ·HN

N∑

i=1

µ̃2i
Hi

, H = 1 +
2m sinh2 α

rn−1∆
,

Hi = 1 +
ℓ2i
r2

, i = 1, 2, . . . , N . (65)

The dilaton φ and the field strength F(n) are given by

e2φ/a = H , eaφ∗F(n) =
dH−1

sinhα
∧
(
coshα dt+

N∑

i=1

ℓi µ
2
i dφi

)
∧ dD−n−2x . (66)

The N quantities µ̃i are subject to the constraint
∑

i µ̃
2
i = 1. They are related to our

previous coordinates constrained µi on the sphere as follows:

µ1 + iµ2 = µ̃1 e
iφ1 , µ3 + iµ4 = µ̃2 e

iφ2 , etc. (67)

We now consider the decoupling limit, which is obtained by making the rescalings

m→ ǫn−1m, sinhα→ ǫ−(n−1)/2 sinhα ,

r → ǫ r , xµ → ǫ−2 xµ , ℓi → ǫ ℓi (68)

and then sending ǫ→ 0. In this limit, the additive constant 1 in the function H in (65) can

be dropped. Furthermore, the last term in (64) can also be dropped. The remaining metric

can be expressed as

ds2D = Y
2

D−2

(
∆

n−1
D−2 ds2d + g−2 ∆

− (D−n−1)
(D−2)

N∑

i=1

X̄−1
i (dµ̃2i + µ̃2i (dφi + g Ai

(1))
2)
)
, (69)
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where ∆ =
∑
X̄i µ̃

2
i , and g = (2m sinh2 α)−1/(n−1). The d = D− n dimensional metric and

the scalar fields Xi are given by

ds2d = −h−
d−3
d−2 f dt2 + h

1
d−2

( dr2

(gr)5−n f
+ (gr)n−3 d~x · d~x

)
,

Xi = (gr)
a2 (D−2)
4(d−2) h

(d−3)
2(d−2) H−1

i ,

Y =
N∏

i=1

Xi =
(
(gr)n+1 h−1

)a2 (D−2)
8(d−2) ,

Ai
(1) =

1−H−1
i

g ℓi sinhα
dt , h =

N∏

i=1

Hi .

f = (gr)n−3(h− 2m

rn−1
) . (70)

This solution describes N electrically-charged black holes in a d-dimensional domain-wall

background.

Note that in general, the abstract metric Ansatz that we have written in (69) does not

(at least as it stands) correspond to part of a consistent Kaluza-Klein reduction. It can be

viewed as a modification of the general consistent metric Ansatz in (6) in which we first

(consistently) partially truncate the scalars by setting them equal in pairs (X1 = X2 = X̄1,

X3 = X4 = X̄2, etc)̇. Then, having also made the redefinitions (67), we introduce a U(1)

gauge field Ai
(1) associated with the rotation in each of the original 2-planes (µ1, µ2), (µ3, µ4),

etc. (Although we have not presented it here, we can also straightforwardly carry out the

same steps on the original Ansätze for φ̂ and F̂(n) in (6) too.) This does give a consistent

reduction in the case (10, 5) discussed in [16], but in general additional fields would have to

be included too. The reason for this is that the U(1) gauge fields, in quadratic products of

the form F i
(2)∧F j

(2), will act as sources for other fields. In the special case of (D,n) = (10, 5),

they actually act as sources for themselves (corresponding to cubic Chern-Simons terms in

the five-dimensional theory), but in the other cases they will act as sources for additional

fields, requiring a larger set of fields in the Kaluza-Klein reduction Ansatz.

The metric (69), together with analogously-obtained expressions for φ̂ and F̂(n), is never-

theless still usable in appropriate circumstances. The problematic terms F i
(2) ∧F j

(2) actually

vanish for our specific domain-wall black hole solutions since all the U(1) charges are purely

electric. This means that these particular lower-dimensional configurations will lift to the

higher dimension without necessitating the turning-on of the additional fields that would be

needed for a fully-consistent Ansatz, but which have been omitted in our discussion. Thus

we still have an exact embedding of these specific solutions in the higher dimension.

19



Case 2: n = 2N

Here, the solution has the same form as (64), but with the range of the index i extended

to include 0. However, there is no angular momentum parameter or azimuthal coordinate

associated with the extra index value, and so ℓ0 = 0 and φ0 = 0. The µ̃i and φi coordinates

are now related to the original coordinates µi on the sphere by

µ0 = µ̃0 , µ1 + iµ2 = µ̃1 e
iφ1 , µ3 + iµ4 = µ̃2 e

iφ2 , etc. (71)

Otherwise, all the formulae in Case 1 generalise to this case, simply by extending the

summation to span the range 0 ≤ i ≤ N . Of course H0 = 1 as a consequence of ℓ0 = 0.

Note that for a = 0, we have (D,n) = (11, 7), (11, 4) and (10, 5). These correspond to

the rotating M-branes [17, 16] and D3-branes [8, 18, 16].
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[7] M. Cvetič, H. Lü, C.N. Pope and A. Sadrzadeh, Consistency of Kaluza-Klein sphere

reductions of symmetric potentials, hep-th/0002056.

[8] P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from

rotating branes, JHEP 9903 (1999) 003, hep-th/9811120.

20

http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/0003286
http://arxiv.org/abs/hep-th/0003286
http://arxiv.org/abs/hep-th/0003103
http://arxiv.org/abs/hep-th/9412184
http://arxiv.org/abs/hep-th/9412184
http://arxiv.org/abs/hep-th/0002056
http://arxiv.org/abs/hep-th/9811120


[9] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of

D3-branes and gauged supergravity, hep-th/9906194.

[10] A. Brandhuber and K. Sfetsos, Nonstandard compactification with mass gaps and

Newton’s Law, hep-th/9908116.

[11] I. Bakas and K. Sfetsos, States and curves of five-dimensional gauged supergravity,

hep-th/9909041.
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