19 research outputs found
Prevalence and Predictors of Overweight and Insulin Resistance in Offspring of Mothers With Gestational Diabetes Mellitus
OBJECTIVE: Gestational diabetes mellitus (GDM) is associated with high birth weight in the offspring. This may lead to overweight and insulin resistance during childhood. The aim of the study was to assess the impact of GDM on overweight risk and insulin resistance in offspring. RESEARCH DESIGN AND METHODS: BMI measurements were collected at age 2, 8, and 11 years from 232 offspring of mothers with GDM (OGDM) and compared with those from 757 offspring of mothers with type 1 diabetes (OT1D) and 431 offspring of nondiabetic mothers (ONDM) born between 1989 and 2000. Insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR]) was determined at age 8 and 11 years in 751 children (74 OGDM). Overweight was defined as BMI percentile >or=90; insulin resistance was defined by HOMA-IR. RESULTS: Overweight prevalence was increased in OGDM compared with OT1D and to ONDM throughout childhood (age 11 years 31.1, 15.8, and 15.5%; P = 0.005). Maternal obesity was an important predictor of overweight risk in children (age 11 years odds ratio 7.0 [95% CI 1.8-27.7]; P = 0.006); birth size and maternal smoking during pregnancy were inconsistently associated with and treatment of GDM during pregnancy did not affect overweight risk. HOMA-IR was increased in OGDM compared with offspring of ONDM mothers (P = 0.01, adjusted for sex and age) and was associated with the child's BMI (P = 0.004). CONCLUSIONS: Overweight and insulin resistance in children is increased in OGDM compared with OT1D or ONDM. The finding that overweight risk is associated mainly with maternal obesity suggests that familial predisposition contributes to childhood growth in these offspring
Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort
Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene
Diagnosing gestational diabetes
The newly proposed criteria for diagnosing gestational diabetes will result in a gestational diabetes prevalence of 17.8%, doubling the numbers of pregnant women currently diagnosed. These new diagnostic criteria are based primarily on the levels of glucose associated with a 1.75-fold increased risk of giving birth to large-for-gestational age infants (LGA) in the Hyperglycemia Adverse Pregnancy Outcome (HAPO) study; they use a single OGTT. Thus, of 23,316 pregnancies, gestational diabetes would be diagnosed in 4,150 women rather than in 2,448 women if a twofold increased risk of LGA were used. It should be recognised that the majority of women with LGA have normal glucose levels during pregnancy by these proposed criteria and that maternal obesity is a stronger predictor of LGA. The expected benefit of a diagnosis of gestational diabetes in these 1,702 additional women would be the prevention of 140 cases of LGA, 21 cases of shoulder dystocia and 16 cases of birth injury. The reproducibility of an OGTT for diagnosing mild hyperglycaemia is poor. Given that (1) glucose is a weak predictor of LGA, (2) treating these extra numbers has a modest outcome benefit and (3) the diagnosis may be based on a single raised OGTT value, further debate should occur before resources are allocated to implementing this change
Association of Diabetes in Pregnancy with Child Weight at Birth, Age 12 Months and 5 Years – A Population-Based Electronic Cohort Study
This study examines the effect of diabetes in pregnancy on offspring weight at birth and ages 1 and 5 years.A population-based electronic cohort study using routinely collected linked healthcare data. Electronic medical records provided maternal diabetes status and offspring weight at birth and ages 1 and 5 years (n = 147,773 mother child pairs). Logistic regression models were used to obtain odds ratios to describe the association between maternal diabetes status and offspring size, adjusted for maternal pre-pregnancy weight, age and smoking status.We identified 1,250 (0.9%) pregnancies with existing diabetes (27.8% with type 1 diabetes), 1,358 with gestational diabetes (0.9%) and 635 (0.4%) who developed diabetes post-pregnancy. Children whose mothers had existing diabetes were less likely to be large at 12 months (OR: 0.7 (95%CI: 0.6, 0.8)) than those without diabetes. Maternal diabetes was associated with high weight at age 5 years in children whose mothers had a high pre-pregnancy weight tertile (gestational diabetes, (OR:2.1 (95%CI:1.25-3.6)), existing diabetes (OR:1.3 (95%CI:1.0 to 1.6)).The prevention of childhood obesity should focus on mothers with diabetes with a high maternal pre-pregnancy weight. We found little evidence that diabetes in pregnancy leads to long term obesity 'programming'
Maternal smoking during pregnancy and offspring overweight : is there a dose–response relationship? An individual patient data meta-analysis
We want to thank the funders of the individual studies: the UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol, the Danish National Research Foundation, Pharmacy Foundation, the March of Dimes Birth Defects Foundation, the Augustinus Foundation, and the Health Foundation, the US NICHD (contracts no. 1-HD-4-2803 and no. 1-HD-1-3127, R01 HD HD034568), the NHMRC, the CNPq (Portuguese acronym for the National Research Council—grant 523474/96-2) and FAPESP (Portuguese acronym for the São Paulo State Research Council—grant 00/0908-7). We would like to thank the participating families of all studies for the use of data. For the ASPAC study, we want to thank the midwives for their help in recruiting families, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. This work was supported by the Deutschen Forschungsgesellschaft (German Research Foundation, DFG) [KR 1926/9-1, KU1443/4-1]. Dr. Gilman’s contribution was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.Peer reviewedPostprin
Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children.
AIMS/HYPOTHESIS: Islet autoantibody-positive children progress to type 1 diabetes at variable rates. In our study, we asked whether characteristic autoantibody and/or gene profiles could be defined for phenotypes showing extreme progression. METHODS: Autoantibodies to insulin (IAA), GAD (GADA), insulinoma-associated antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A) were measured in follow-up sera, and genotyping for type 1 diabetes susceptibility genes (HLA-DR/HLA-DQ, INS variable number of tandem repeats [VNTR] and single nucleotide polymorphisms at PTPN22, PTPN2, ERBB3, IL2, SH2B3, CTLA4, IFIH1, KIAA0350 [also known as CLEC16A], CD25, IL18RAP, IL10, COBL) was performed on the DNA samples of children born to a parent with type 1 diabetes and prospectively followed from birth for up to 22 years. RESULTS: Of the 1,650 children followed, 23 developed multiple autoantibodies and progressed to diabetes within 3 years (rapid progressors), while 24 children developed multiple autoantibodies and remained non-diabetic for more than 10 years from seroconversion (slow progressors). Rapid and slow progressors were similar with respect to HLA-DR/HLA-DQ genotypes, development of IAA, GADA and ZnT8A, and progression to multiple autoantibodies. In contrast, IA-2A development was considerably delayed in the slow progressors. Furthermore, both groups were effectively distinguished by the combined presence or absence of type 1 diabetes susceptibility alleles of non-HLA genes, most notably IL2, CD25, INS VNTR, IL18RAP, IL10, IFIH1 and PTPN22, and discrimination was improved among children carrying high-risk HLA-DR/HLA-DQ genotypes. CONCLUSIONS/INTERPRETATION: Our data suggest that genotypes of non-HLA type 1 diabetes susceptibility genes influence the likelihood or rate of diabetes progression among children with multiple islet autoantibodies.  
Effect of a single autologous cord blood infusion on beta-cell and immune function in children with new onset type 1 diabetes: A non-randomized, controlled trial.
Background The application of autologous cord blood in children with type 1 diabetes has been found to be safe, but not to preserve beta-cell function in a previous study, which, however, had not included a control group. Objective To compare the changes of metabolic and immune function over time between cord blood infused children and natural controls. Subjects and methods Seven children with newly diagnosed type 1 diabetes underwent a single autologous cord blood infusion and 10 children were enrolled as natural controls in a non-randomized, controlled, open label intervention trial. Primary analyses were performed 1 year following cord blood infusion. Cases and controls were compared regarding metabolic [area under the curve (AUC) and peak C-peptide, insulin use, and HbA1c] and immune outcome (islet autoantibody titer and T-cell response), adjusted for age, gender, diabetes duration, and baseline levels. Results There were no significant adverse events related to the infusion. Metabolic and immune outcomes were not significantly different at 12 months follow-up between infused children and controls (e.g., adjusted p = 0.244 for AUC C-peptide, adjusted p = 0.820 for insulin use, adjusted p = 0.772 for peripheral regulatory T cells). Six-month change of AUC C-peptide correlated significantly with the number of infused CD34+ cells (r = 0.931, p = 0.002). Conclusions An autologous cord blood infusion does not change the natural course of metabolic and immune parameters after disease onset. However, the content of CD34+ cells in the stored blood sample might offer potential for improvement of future cell therapies