696 research outputs found
Renal albumin absorption in physiology and pathology
Albumin is the most abundant plasmaprotein serving multiple functions as a carrier of metabolites, hormones, vitamins, and drugs, as an acid/base buffer, as antioxidant and by supporting the oncotic pressure and volume of the blood. The presence of albumin in urine is considered to be the result of the balance between glomerular filtration and tubular reabsorption. Albuminuria has been accepted as an independent risk factor and a marker for renal as well as cardiovascular disease, and during the past decade, evidence has suggested that albumin itself may cause progression of renal disease. Thus, the reduction of proteinuria and, in particular, albuminuria has become a target in itself to prevent deterioration of renal function. Studies have shown albumin and its ligands to induce expression of inflammatory and fibrogenic mediators, and it has been hypothesized that increased filtration of albumin causes excessive tubular reabsorption, resulting in inflammation and fibrosis, resulting in the loss of renal function. In addition, it is known that tubular dysfunction in itself may cause albuminuria owing to decreased reabsorption of filtered albumin, and, recently, it has been suggested that significant amounts of albumin fragments are excreted in the urine as a result of tubular degradation. Thus, although both tubular and glomerular dysfunction influences renal handling of albumin, it appears that tubular reabsorption plays a central role in mediating the effects of albumin on renal function. The present paper will review the mechanisms for tubular albumin uptake and the possible implications for the development of renal disease
Magnetotail structures in a simulated Earth's magnetosphere
The structure of the magnetotail is investigated in a laboratory simulated magnetosphere. Particular emphasis is placed on the region of distant magnetotail where the closed field line region of the plasma sheet terminates and the process of reconnection takes place. Our study builds upon the previous investigation of the magnetotail where the main results were based on the magnetic field measurements in the tail region of the simulated magnetosphere. In this paper, more elaborate measurements of plasma flow and electric field are presented. Besides these measurements, this region of distant magnetotail is also explored by high resolution imaging with a gated optical imager (GOI) and by digital image analysis. These images clearly reveal a Y-type magnetic neutral line for the northward 'interplanetary' field (IMF) and a usual X-type for the southward IMF that confirms our previous results deduced from the magnetic field measurements. In the neighborhood of these neutral points a strong component of dawn to dusk electric field (E(sub y)) and a counterstreaming plasma flow is also observed. Plasma flow is measured by using a double sided Faraday cup which is also used to measure the y-component of tail current (J(sub y)) at different locations. These measurements reveal that the tail current is not carried by ions as previously thought, rather it is carried by electrons alone
A case report of hereditary apolipoprotein A-I amyloidosis associated with a novel APOA1 mutation and variable phenotype
Apolipoprotein A-I (apo A-I) amyloidosis is a non-AL, non-AA, and non-transthyretin type of amyloidosis associated with mutations in the APOA1 gene inherited in an autosomal dominant fashion. It is a form of systemic amyloidosis, but at presentation, can also mimic localized amyloidosis. The renal presentation generally involves interstitial and medullary deposition of apo A-I amyloid protein. We describe the identification of apo A-I amyloidosis by mass spectrometry in a 52-year old male, with no family history of amyloidosis, presenting with nephrotic syndrome and associated with heterozygosity for a novel APOA1 mutation (c.220 T > A) which encodes the known amyloidogenic Trp50Arg variant. Renal amyloid deposits in this case were confined to the glomeruli alone, and the patient developed progressive renal impairment. One year after diagnosis, the patient had a successful kidney transplant from an unrelated donor. Pathogenic mutations in the APOA1 gene are generally associated with symptoms of amyloidosis. In this family however, genotyping of family members identified several unaffected carriers suggesting a variable disease penetrance, which has not been described before in this form of amyloidosis and has implications when counselling those with APOA1 mutations
Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale
We present results of Reynolds-averaged turbulence model simulation on the
problem of magnetic reconnection. In the model, in addition to the mean
density, momentum, magnetic field, and energy equations, the evolution
equations of the turbulent cross-helicity , turbulent energy and its
dissipation rate are simultaneously solved to calculate the rate
of magnetic reconnection for a Harris-type current sheet. In contrast to
previous works based on algebraic modeling, the turbulence timescale is
self-determined by the nonlinear evolutions of and , their
ratio being a timescale. We compare the reconnection rate produced by our
mean-field model to the resistive non-turbulent MHD rate. To test whether
different regimes of reconnection are produced, we vary the initial strength of
turbulent energy and study the effect on the amount of magnetic flux
reconnected in time.Comment: 10 pages, 7 figure
On the mean field dynamo with Hall effect
We study in the present paper how Hall effect modifies the quenching process
of the electromotive force (e.m.f.) in Mean Field Dynamo (MFD) theories. We
write down the evolution equations for the e.m.f. and for the large and small
scale magnetic helicity, treat Hall effect as a perturbation and integrate the
resulting equations assuming boundary conditions such that the total
divergencies vanish. For force-free large scale magnetic fields, Hall effect
acts by coupling the small scale velocity and magnetic fields. For the range of
parameters considered, the overall effect is a stronger quenching of the e.m.f.
than in standard MHD and a damping of the inverse cascade of magnetic helicity.
In astrophysical environments characterized by the parameters considered here,
Hall effect would produce an earlier quenching of the e.m.f. and consequently a
weaker large scale magnetic field.Comment: 8 pages, 4 figures. Accepted by A&
Conditions for fast magnetic reconnection in astrophysical plasmas
We investigate favourable circumstances for fast magnetic reconnection in astrophysical plasmas based on recent results by Rogers et al. (2001). Given that a critical magnetic field structure with antiparallel field lines exists, our analysis demonstrates that a sufficient condition for fast reconnection is that the ratio of the thermal pressure to the magnetic field pressure should be significantly larger than (twice the ratio of electron mass to proton mass). Using several examples (like the different components of the interstellar medium, the intergalactic medium, active galactic nuclei and jets) we show that in almost all astrophysical plasmas, magnetic reconnection proceeds fast i.e. independent of the resistivity, with a few percent of the Alfv{\'e}n speed. Only for special cases like neutron stars and white dwarfs is smaller than
New Insights into Dissipation in the Electron Layer During Magnetic Reconnection
Detailed comparisons are reported between laboratory observations of
electron-scale dissipation layers near a reconnecting X-line and direct
two-dimensional full-particle simulations. Many experimental features of the
electron layers, such as insensitivity to the ion mass, are reproduced by the
simulations; the layer thickness, however, is about 3-5 times larger than the
predictions. Consequently, the leading candidate 2D mechanism based on
collisionless electron nongyrotropic pressure is insufficient to explain the
observed reconnection rates. These results suggest that, in addition to the
residual collisions, 3D effects play an important role in electron-scale
dissipation during fast reconnection.Comment: 17 pages, 4 figure
Imaging Spectroscopy of a White-Light Solar Flare
We report observations of a white-light solar flare (SOL2010-06-12T00:57,
M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics
Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager
(RHESSI). The HMI data give us the first space-based high-resolution imaging
spectroscopy of a white-light flare, including continuum, Doppler, and magnetic
signatures for the photospheric FeI line at 6173.34{\AA} and its neighboring
continuum. In the impulsive phase of the flare, a bright white-light kernel
appears in each of the two magnetic footpoints. When the flare occurred, the
spectral coverage of the HMI filtergrams (six equidistant samples spanning
\pm172m{\AA} around nominal line center) encompassed the line core and the blue
continuum sufficiently far from the core to eliminate significant Doppler
crosstalk in the latter, which is otherwise a possibility for the extreme
conditions in a white-light flare. RHESSI obtained complete hard X-ray and
\Upsilon-ray spectra (this was the first \Upsilon-ray flare of Cycle 24). The
FeI line appears to be shifted to the blue during the flare but does not go
into emission; the contrast is nearly constant across the line profile. We did
not detect a seismic wave from this event. The HMI data suggest stepwise
changes of the line-of-sight magnetic field in the white-light footpoints.Comment: 14 pages, 7 figures, Accepted by Solar Physic
- …