1,477 research outputs found
Quantum diagonalization of Hermitean matrices
To measure an observable of a quantum mechanical system leaves it in one of its eigenstates and the result of the measurement is one of its eigenvalues. This process is shown to be a computational resource: Hermitean (N ×N) matrices can be diagonalized, in principle, by performing appropriate quantum mechanical measurements. To do so, one considers the given matrix as an observable of a single spin with appropriate length s which can be measured using a generalized Stern-Gerlach apparatus. Then, each run provides one eigenvalue of the observable. As the underlying working principle is the `collapse of the wavefunction' associated with a measurement, the procedure is neither a digital nor an analogue calculation - it defines thus a new example of a quantum mechanical method of computation
Gas Phase Production and Loss of Isoprene Epoxydiols
Isoprene epoxydiols (IEPOX) form in high yields from the OH-initiated oxidation of isoprene under low-NO conditions. These compounds contribute significantly to secondary organic aerosol formation. Their gas-phase chemistry has, however, remained largely unexplored. In this study, we characterize the formation of IEPOX isomers from the oxidation of isoprene by OH. We find that cis-β- and trans-β-IEPOX are the dominant isomers produced, and that they are created in an approximate ratio of 1:2 from the low-NO oxidation of isoprene. Three isomers of IEPOX, including cis-β- and trans-β, were synthesized and oxidized by OH in environmental chambers under high- and low-NO conditions. We find that IEPOX reacts with OH at 299 K with rate coefficients of (0.84 ± 0.07) × 10^(–11), (1.52 ± 0.07) × 10^(–11), and (0.98 ± 0.05) × 10^(–11) cm^3 molecule^(–1) s^(–1) for the δ1, cis-β, and trans-β isomers. Finally, yields of the first-generation products of IEPOX + OH oxidation were measured, and a new mechanism of IEPOX oxidation is proposed here to account for the observed products. The substantial yield of glyoxal and methylglyoxal from IEPOX oxidation may help explain elevated levels of those compounds observed in low-NO environments with high isoprene emissions
Modeling and experimental study of dispersion and deposition of respiratory emissions with implications for disease transmission
The ability to model the dispersion of pathogens in exhaled breath is important for characterizing transmission of the SARS-CoV-2 virus and other respiratory pathogens. A Computational Fluid Dynamics (CFD) model of droplet and aerosol emission during exhalations has been developed and for the first time compared directly with experimental data for the dispersion of respiratory and oral bacteria from ten subjects coughing, speaking, and singing in a small unventilated room. The modeled exhalations consist of a warm, humid, gaseous carrier flow and droplets represented by a discrete Lagrangian particle phase which incorporates saliva composition. The simulations and experiments both showed greater deposition of bacteria within 1 m of the subject, and the potential for a substantial number of bacteria to remain airborne, with no clear difference in airborne concentration of small bioaerosols (<10 μm diameter) between 1 and 2 m. The agreement between the model and the experimental data for bacterial deposition directly in front of the subjects was encouraging given the uncertainties in model input parameters and the inherent variability within and between subjects. The ability to predict airborne microbial dispersion and deposition gives confidence in the ability to model the consequences of an exhalation and hence the airborne transmission of respiratory pathogens such as SARS-CoV-2
Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants
Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
First measurements of radar coherent scatter by the Radio Aurora Explorer CubeSat
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95350/1/grl29342.pd
Recommended from our members
Ultra-rare mutations in SRCAP segregate in Caribbean Hispanic families with Alzheimer disease.
OBJECTIVE: To identify rare coding variants segregating with late-onset Alzheimer disease (LOAD) in Caribbean Hispanic families. METHODS: Whole-exome sequencing (WES) was completed in 110 individuals from 31 Caribbean Hispanic families without APOE ε4 homozygous carriers. Rare coding mutations segregating in families were subsequently genotyped in additional families and in an independent cohort of Caribbean Hispanic patients and controls. SRCAP messenger RNA (mRNA) expression was assessed in whole blood from mutation carriers with LOAD, noncarriers with LOAD, and healthy elderly controls, and also from autopsied brains in 2 clinical neuropathologic cohort studies of aging and dementia. RESULTS: Ten ultra-rare missense mutations in the Snf2-related CREBBP, activator protein (SRCAP), were found in 12 unrelated families. Compared with the frequency in Caribbean Hispanic controls and the Latino population in the Exome Aggregation Consortium, the frequency of SRCAP mutations among Caribbean Hispanic patients with LOAD was significantly enriched (p = 1.19e-16). mRNA expression of SRCAP in whole blood was significantly lower in mutation carriers with LOAD, while the expression in whole blood and in the brain was significantly higher in nonmutation carriers with LOAD. Brain expression also correlated with clinical and neuropathologic endophenotypes. CONCLUSIONS: WES in Caribbean Hispanic families with LOAD revealed ultra-rare missense mutations in SRCAP, a gene expressed in the brain and mutated in Floating-Harbor syndrome. SRCAP is a potent coactivator of the CREB-binding protein and a regulator of DNA damage response involving ATP-dependent chromatin remodeling. We hypothesize that increased expression in LOAD suggests a compensatory mechanism altered in mutation carriers
Attitudes and beliefs regarding organ donation among South Asian people in the UK
There is an acute shortage of organ donors in the UK, specifically among South Asian communities. This article reports the findings from the largest ever study undertaken among South Asian people in the UK that seeks to explore attitudes and beliefs towards organ donation. This article highlights that seemingly intractable factors, such as religion and culture, are often tied to more complex issues, such as distrust in the medical system and lack of awareness, that contribute to the shortage of organ donors among South Asian communities in the U
Association of the CpG Methylation Pattern of the Proximal Insulin Gene Promoter with Type 1 Diabetes
The insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10−16) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8–15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r = 0.77) and CpG -135 and -234 (r = 0.65). 70/485 (14%) of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D) who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p = 2.10−6) but increased CpG-234 methylation (p = 5.10−8), the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined
- …