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Abstract
The ability to model the dispersion of pathogens in exhaled breath is important for 
characterizing transmission of the SARS-CoV-2 virus and other respiratory pathogens. 
A Computational Fluid Dynamics (CFD) model of droplet and aerosol emission during 
exhalations has been developed and for the first time compared directly with ex-
perimental data for the dispersion of respiratory and oral bacteria from ten subjects 
coughing, speaking, and singing in a small unventilated room. The modeled exhala-
tions consist of a warm, humid, gaseous carrier flow and droplets represented by a 
discrete Lagrangian particle phase which incorporates saliva composition. The simula-
tions and experiments both showed greater deposition of bacteria within 1 m of the 
subject, and the potential for a substantial number of bacteria to remain airborne, 
with no clear difference in airborne concentration of small bioaerosols (<10 μm diam-
eter) between 1 and 2 m. The agreement between the model and the experimental 
data for bacterial deposition directly in front of the subjects was encouraging given 
the uncertainties in model input parameters and the inherent variability within and 
between subjects. The ability to predict airborne microbial dispersion and deposition 
gives confidence in the ability to model the consequences of an exhalation and hence 
the airborne transmission of respiratory pathogens such as SARS-CoV-2.
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1  |  INTRODUC TION

The SARS-CoV-2 pandemic has brought about the need to assess 
the risks posed by different viral and bacterial transmission routes 
for hazardous respiratory infections. Knowledge of the relative im-
portance of these different routes is important in understanding 
the ways in which infection can be transmitted and in determining 
the best combination of control measures. The two main routes of 
infectious disease transmission are contact or airborne. Contact 
transmission may be by direct contact with droplets from a contami-
nated individual or indirect contact such as touching a contaminated 
surface (fomite transmission). Airborne transmission arises from 
pathogen-laden exhaled aerosols which are inhaled.1 Droplets and 
aerosols exhaled during normal activities (breathing, talking, singing, 
coughing, and sneezing) have a range of diameters from <1 μm to 
>100  μm, and this plays an important role in the routes by which 
infection could occur. Very large droplets (>100 μm), which may be 
able to carry a larger microbial load, typically follow a ballistic trajec-
tory and are unlikely to fully evaporate before they deposit on sur-
faces or on a susceptible individual. Those in smaller diameter ranges 
experience, proportionally, increased evaporation2 with a final di-
ameter depending on their initial size and respiratory fluid composi-
tion.3 Studies have suggested4,5 that the microbial load depends on 
droplet size and origin, though these relationships remain uncertain 
and may vary with the type of bacteria or virus. However, the small-
est aerosols may be more numerous than large droplets, may remain 
suspended in the air for relatively long periods, and can be inhaled by 
a susceptible individual. It is also recognized that dispersion behavior 
is heavily affected by environmental factors and there is no absolute 
distinction between the fate of large droplets and aerosols, that is, 
there is a continuum of behavior across the spectrum of diameters. 
The mechanism of airborne transmission has long been acknowl-
edged6 and plays an important role in the spread of multiple infec-
tious diseases including bacterial pathogens such as tuberculosis,7 
and viral diseases including measles,8 influenza,9 and SARS.10 The 
World Health Organisation (WHO) recently acknowledged the role 
of airborne routes in the transmission of SARS-CoV-2.11

Characterization of the range of droplet and aerosol sizes in 
exhaled breath and their effect on transmission has long been rec-
ognized as an important part of understanding the transmission of 
infection. Early work to characterize the size distribution of exhaled 
droplets by Duguid12 demonstrated significantly greater numbers of 
droplets (and correspondingly much greater volumes of fluid) are re-
leased during sneezing and coughing compared to talking. More re-
cent investigations (Johnson et al.,13 Gregsonet al.,14), demonstrate 
a wide variation in the number and size of with different vocal activ-
ities and between different people. There have also been a number 
of studies to characterize exhalation flows,15,16 which are an import-
ant part of defining the initial air movement from the mouth and 
nose which propel and carry the respiratory droplets and aerosols.

Mathematical modeling can help provide insight into the phys-
ics of transmission. Droplet evaporation models, (for example Chen 
et al.,17 de Oliveira et al.,18 Wei and Li,19 Xie et al.,2 Walker et al.,20), 

can be used to explore the influence of environmental factors such 
as relative humidity, temperature, and diameter change due to 
evaporation which can influence how droplets behave. One of the 
limitations of these models is that they are unable to account for 
factors such as ventilation flows which can influence the transport 
and deposition of airborne droplets. Other types of models, such 
as Noakes and Sleigh,21 Burridge et al.,22 or Jones et al.,23 consider 
transmission risks as a function of ventilation and pathogen emission 
rates, but without explicitly modeling the transport and evaporation 
of droplets.

Computational Fluid Dynamics provides a means of modeling 
both the droplet physics and the effects of ventilation and can model 
realistic geometries and their effect on the flow. CFD has been used 
to model the transmission of infectious diseases, particularly in re-
lation to the SARS and current SARS-CoV-2 outbreaks (e.g.24-29). 
The main benefit of CFD is that it can combine models to describe 
the interaction of exhaled droplets with environmental flows that 
influence the behavior of droplets, such as ventilation and thermal 
effects. CFD modeling can also be used to understand the effects of 
mitigation methods such as screens, more complex geometries, or 
the influence of additional people within the environment.

There are, however, numerous challenges to modeling these sce-
narios using CFD. Droplets of a few microns size in exhalations can 
evaporate in less than a few seconds. Furthermore, room geome-
tries may be of the order of several meters in dimension and have air 
change intervals spanning many minutes. Combining these variables 
and scales into single simulations means that computer run times 
can become prohibitively long. A further challenge is that the input 
conditions or source terms (e.g., for exhalations) need to be defined 
from the outset and these can have a large influence on the results. 
Long simulation times can limit the scope of sensitivity analysis that 
can be carried out on the inputs, and a heavy reliance is made on the 
strength of input assumptions.

Validation is an important aspect of a modeling study to provide 
assurance that the assumptions and inputs used in the simulation are 
appropriate. One of the challenges in validating exhalation models 
is that the experimental data to cover all aspects from droplet pro-
duction through transport to deposition, viral load, and infection do 
not currently exist. For this reason, many previous modeling studies 
have focussed on validating components of the model as a means of 
gaining confidence in the overall predictions. A number of studies 
have compared CFD simulations to exhalation flows from people,29 
idealized experiments with manikins in chambers,30 and bioaerosol 
chamber experiments using artificial generation of microbial aero-
sols from a nebulizer.31 However, to our knowledge, there are no 
previous studies that directly compared CFD or droplet model simu-
lation studies with human volunteers exhaling microorganisms.

In the current study, a CFD model of exhalations has been de-
veloped and compared to experimental data for surface deposition 
and air sampling of exhaled bacteria carrying droplets from human 
participants. The experiments were carried out to quantify the air-
borne dispersion and deposition of exhaled droplets to provide data 
for SARS-CoV-2 risk assessments, using detection of respiratory and 
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oral bacteria as a surrogate for virus-laden droplets. Component val-
idation studies were also carried out on individual elements of the 
CFD model, such as an exhalation jet and single droplet evaporation, 
to give confidence in the overall predictions from the model.

2  |  INDOOR E XHAL ATION DISPERSION 
E XPERIMENTS

Experiments were carried out by the United Kingdom Health 
Security Agency (UKHSA) to investigate the behavior of exhaled 
aerosol and droplet particles. The study measured respiratory bac-
teria as a means of assessing the dispersion characteristics of aer-
osols and droplets in a 4 x 2.3 x 2.3 m (Length × Width × Height) 
environmental chamber, shown in Figure  1(A). The chamber was 
unventilated during experiments, with the only flow provided by air 
samplers operated during the study.

Ten laboratory workers were recruited to carry out the study, 
with an age range of 21–59  years and gender balance of 50% fe-
male and 50% male. Ethical approval for the study was given by the 
UKHSA Research Ethics and Governance of Public Health Practice 
Group (UKHSA REGG). The participants wore hooded Tyvek suits, 
shoe coverings, and gloves to reduce shedding of non-oral micro-
organisms and remained seated facing forwards during the study. 
Participants provided a spit sample into a universal container be-
fore each experiment, primarily to assess bacterial load. Participants 
were seated at one end of the chamber and were required to per-
form a sequential set of activities as follows: cough three times; read 
out loud the numbers from 1 to 100; inhale and exhale 3 times; sing 
happy birthday twice loudly; inhale and snort 3 times; read out loud 
the numbers from 1 to 100; and cough three times.

Samples were collected by air samplers (Andersen 6 stage and 
Slit samplers) and on 15 Columbia Blood Agar (CBA) settle plates 
placed at 20 cm intervals directly in front of and to the side of the 
subject. The Andersen samplers operated at 28.3  L/min and col-
lected particles onto six CBA plates fractionated by particle diam-
eter, though the breakdown by diameter was not included in the 
results. The slit samplers sampled onto a rotating CBA plate at the 
same flow rate. Both samplers were operated for a period of 10 min. 
Sampler positions are described in the CFD modeling section below. 

Immediately before the start of the experiment, the settle plates had 
their lids removed, the air samplers were switched on automatically 
and the ventilation was turned off remotely. At the end of each 10-
min period, the samples were collected and incubated for analysis 
and the room was ventilated with filtered air for at least 10 min at 
180 air changes per hour before the next study.

The number of colony-forming units (CFUs) collected and cul-
tured on each plate was used to define the bacterial deposition onto 
the surface or the total sampled from the air over the ten-minute 
experimental period. The type of bacteria and their origin (e.g., or-
ganisms from the respiratory tract) that formed the colonies in these 
assays have not yet been determined. Consequently, a proportion of 
the colonies detected may have come from other sources.

3  |  COMPUTATIONAL FLUID DYNAMIC S 
MODELING OF E XHAL ATIONS

In line with previous CFD studies,24,25,27,28,29 the approach adopted 
for modeling exhalations is the Euler-Lagrange approach. The 
Eulerian fluid is modeled on a fixed computational mesh through 
which the flow field is calculated. The Lagrangian method involves 
computationally tracking the trajectories of individual droplets as a 
discrete phase, throughout the calculated flow field from their point 
of introduction until they deposit on a surface or escape the do-
main. One of the main benefits of this method is that a fixed count 
of particles having specific diameters can be modeled. Model out-
puts such as deposited mass can therefore be calculated for use in 
further analysis such as in a Quantitative Microbial Risk Assessment 
(QMRA).32 While other studies33,34 have used a purely Eulerian drift-
flux framework to study size-resolved particle concentration and 
deposition, such approaches may not be able to capture trajectories 
for larger droplets with significant inertia.

The simulations in this study were carried out using the commer-
cial software ANSYS Fluent 19.0.35 The mixture of air, water vapor, 
and exhaled carbon dioxide in the Eulerian phase was modeled using 
a species transport model. The local mass fraction of each species 
was solved for with a convection-diffusion equation which included 
a source term for the transfer of water vapor from the Lagrangian 
droplets to the Eulerian phase.

F I G U R E  1 (A) Experimental set up in 
the environmental chamber and modeled 
geometry (B). The modeled geometry 
shows the sampler locations with the 
naming convention used to present the 
results

(A) (B)
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3.1  |  Geometry and meshing

The modeled geometry is shown in Figure 1(B). The tables holding 
the settle plates were 0.5 m high and approximated by cuboidal vol-
umes, with the centerline settle plates labeled PCL1-PCL10 and the 
right hand side settle plates labeled PR1-PR5, with PCL1 and PR1 
being closest to the subject. The centerline plates were set out to a 
distance of 2 m from the subject's assumed knee position, and the 
right hand plates were set out to 1 m from the subject's assumed 
knee position. The air samplers, at 1 m height, were represented by 
floating cylindrical volumes, labeled Andersen “AS” and slit “SS”. AS1 
and SS1 were located at 1 m, AS2 and SS2 at 2 and 2.5 m, respec-
tively, and AS3 at 1 m to the left of the participant. The subject was 
approximated by a simplified geometry,36 having a mouth defined by 
a circular opening set at a height to match a sitting position. In the 
experiments, there will have been some variability of the subject's 
dimensions, along with the distance from the subject's face to the 
first settle plate.

The chamber was meshed using unstructured tetrahedral cells, 
with prismatic inflation layers adjacent to the solid surfaces. In the 
region where the thermal plume from the person impinged on the 
ceiling, wall y+ values were approximately 11.5, with an average of 
2.5 on the body surface. Mesh refinement was applied in the region 
of the mouth and the exhaled jet, based on isolated jet simulations. 
Cell sizes varied from approximately 3 mm at the mouth, to approxi-
mately 75 mm in the room, away from walls or openings. The results 
reported here were obtained on meshes of approximately 655 000 
nodes, which provided reasonable run times. A mesh sensitivity 
study was carried out, which showed that particle sample results 
were insensitive to further mesh refinement. An explanation for this 
behavior is that the sampled results are driven by ballistic deposition 
or sedimentation, rather than wall-parallel flow, where mesh effects 
can be important. Increasing the overall mesh density to 2.3 million 
nodes did not appreciably change the diameter ranges or quantity of 
particles collected by the settle plates or air samplers. The air sam-
plers mainly collected small particles, which are influenced by the 
room air flow.

3.2  |  Boundary conditions

The experiments were carried out at an ambient temperature of 
22°C and a relative humidity (RH) of between 44% and 50%. All 
solid walls were set to the ambient temperature value and the solu-
tion initialized with a RH of 50%. As the people in the experiments 
were fully clothed apart from their face, only the convective heat 
flux from the subject was modeled, which was applied as a surface 
heat flux of 25 W/m2. This value is similar to that measured by 
Zhu et al.29 for a resting subject. The inlet of each air sampler was 
a circular region, set as an outflow through which air was drawn 
at a constant volume flow rate, equal to the experimental flow 
rate. The room was specified as being unventilated during the tri-
als, but there was likely to be a small air exchange through the 

door seal and ventilation system. A pressure boundary matching 
the position of the ventilation inlet in the chamber was defined 
(shown in blue in Figure 1B) to balance the outflow of air through 
the samplers. This was specified as a relative pressure of zero and 
backflow temperature equal to the room temperature. In practice, 
the leakage flows are unknown. However, the air velocity through 
this balancing opening was very small and did not influence the 
flows in the room.

3.3  |  Turbulence modeling

The Reynolds-Averaged Navier-Stokes (RANS) approach was used 
as it is less computationally intensive than other approaches which 
aim to directly resolve large-scale turbulent fluctuations. There 
are numerous RANS turbulence models available which provide 
good predictions in different types of flows. A challenge is that 
there is no universally applicable turbulence model which provides 
optimal predictions in all physical scenarios (e.g., jet flow and near 
wall flow). Therefore, a level of compromise is often required. 
Based on initial simulations of buoyancy-driven flow in a room and 
of an isolated turbulent jet, the k-ω SST model37 was used across 
all simulations.

3.4  |  Modeling of dispersed respiratory particles

Respiratory particles were modeled using Fluent's multicompo-
nent model. The particles consisted of two components; a solid 
part (consisting of salts, proteins, and surfactant) specified as non-
volatile and a liquid part (water) which could evaporate into the 
Eulerian phase. All of the solids were grouped into the non-volatile 
part, with a volume-weighted density calculated from the average 
of the non-volatile components1 as shown in Table 1. The resultant 
average solids density was 1830 kg/m3

, giving the particles initial 
mass fractions of 98.75% water and 1.25% solids. This water con-
tent was similar to the artificial saliva water content described by 
Walker et al.20 of 97.9%.

3.4.1  | Momentum exchange

The exchange of momentum between the Eulerian and Lagrangian 
phases was two-way and accounted for by equating the change of 
momentum of a particle to the sum of the forces acting on it38:

The term on the left is the change in particle momentum (kg m/s) 
and the forces on the right are the drag force (FD), buoyancy force 
(FB), and other forces (FO), in (N). Virtual mass and pressure gradient 
forces were not included as the density of the Eulerian phase was 

(1)dpp

dt
= FD + FB + FO
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much lower than the particle density.38 The effects of Brownian mo-
tion were not modeled as it has been suggested39 that the effect is 
only significant for particles ≤0.03 µm, which is considerably smaller 
than the particles considered in the current study.

3.4.2  |  Turbulent dispersion

Turbulent dispersion introduces a random pattern to the motion of 
particles, to reflect the effect of small-scale turbulent fluctuations that 
have been averaged out in the RANS approach. Turbulent dispersion 
was modeled using the discrete random walk model, DRW,40 where the 
drag term in Equation 1 was determined from both the mean flow and 
a fluctuating component. This fluctuating component was a random 
proportion of the local RMS value of the velocity fluctuations which 
were derived from the turbulent kinetic energy of the flow. The de-
fault DRW model was implemented so that the same random seed was 
used for each simulation, such that two simulations run with turbulent 
dispersion would have identical solutions. The DRW model is known 
to give poor predictions of wall impaction rates of small particles in 
wall-parallel flows because of the assumption of isotropic turbulent 
fluctuations in the two-equation turbulence model RANS approach.41 
However, for this scenario, air flows were low and deposition was likely 
to be dominated by sedimentation for the majority of the particle sizes. 
Ceiling and wall deposition rates, where sedimentation does not con-
tribute, were expected to be very small in comparison and were not 
directly compared in this study.

3.4.3  | Mass transfer

Particle mass transfer was modeled using the diffusion-controlled 
model,38 which assumes that the rate of vaporization of component 
i is governed by the concentration gradient between the droplet sur-
face and Eulerian phase:

where Sh is the Sherwood number (-), which in turn depends on the 
Reynolds (-) and Schmidt (-) numbers, Di is the diffusion coefficient 
(m2/s), dp is the particle diameter (m), Mw,i is the molecular weight of the 
component (kg/kmol), and Ci,s and Ci,∞ are the concentrations (kmol/
m3) at the particle surface and in the Eulerian continuum, respectively.

3.4.4  |  Heat transfer

Heat transfer to the particle was modeled using the multicompo-
nent energy equation, accounting for heat transfer by convection 
and vaporization38:

where mp is the particle mass (kg), Tp is the particle temperature (K), 
T∞ is the continuum temperature (K), Cp is the particle heat capacity 
(J/kg K), h is the heat transfer coefficient (W/m2 K), Ap is the particle 
surface area (m2), and hfg,i is the latent heat of vaporization of com-
ponent i (J/kg).

3.4.5  |  Particle material model

The surface concentration of a solution particle is affected by its 
composition and the departure from an ideal solution becomes im-
portant, especially at high solute fractions. Drying of respiratory 
droplets has been extensively studied, and there are numerous ap-
proaches that can be taken.18,20 In the current work, the model of 
Walker et al.20 was implemented to define the particle surface vapor 
concentration. For a multicomponent particle, the surface concen-
tration can be given by38:

where γi is the activity coefficient (-), χi is the component mole fraction 
(-), φi is the fugacity coefficient (-), Psat,i is the saturation vapor pressure 
(Pa) at temperature Tp (K), and Z

V is the vapor compressibility (-). For an 
ideal gas at low pressure, the fugacity coefficient and compressibility 
are assumed to be equal to 1. Non-ideal solution effects are accounted 
for through the activity, αi (-), which is the product of the activity coef-
ficient and component mole fraction42:

where Pi is the modified vapor pressure. Walker et al.
20 parame-

terized the solute mass fraction, Ys, (-) in terms of water activity, 
αw, for deep lung fluid and artificial saliva. The parameterization for 
artificial saliva was implemented in Fluent as a lookup table that 
returned the water activity from the solute mass fraction in the 
particles. Assuming the solute to be non-volatile, with water being 
the only vaporizing component, the surface concentration was cal-
culated by

(2)dmi

dt
= Sh�dpDiMw,i

(

Ci,s − Ci,∞

)

(3)mpCp

dTp

dt
= hAp

(

T∞ − Tp
)

+
∑

i

hfg,i
dmi

dt

(4)Ci,s = � ixi�i

Psat,i

ZVRTp

(5)�i = � ixi =
Pi

Psat,i

(6)Cw,s = �w

Psat,w

RTp
, �w = f

(

Ys
)

TA B L E  1 Particle solids composition, taken from Stettler et al1

Concentration (g/L)
Density 
(kg/m3)

Salt 9 2160

Protein 3 1362

Surfactant 0.5 1082
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To check that the modifications to the material model were cor-
rectly implemented, it was compared against data from Hamey43 
using pure water droplets. The model of Walker et al.20 neglects the 
effects of surface curvature. The effect was not implemented in the 
Fluent model as it has been shown to be small for particles greater 
than 100 nm,42,44 which represents the majority of particles consid-
ered in this study. An additional simplifying assumption was made, 
based on data in Walker et al.20, that the models for artificial saliva 
and deep lung fluid were sufficiently similar that the same material 
model could be used for all the particles in the simulations.

3.5  |  Specification of the exhalation carrier flow

The geometry of the mouth during coughing, talking, and singing is 
variable and highly uncertain. Rather than attempt to capture these 
intricacies, exhalations were assumed to originate only from the 
mouth region which was defined as a circular orifice with a fixed 
diameter, depending on the activity. A source term was applied over 
this opening and consisted of a gaseous “carrier” flow with a speci-
fied temperature, RH, and transient velocity profile at a particular 
angle (Figure 2), along with a simultaneous injection of particles. It is 
known that jet dispersion results are sensitive to the inlet turbulence 
intensity. There is little available information on this quantity for this 
specific application, so the intensity and length scale were set as 
10% and 0.01 m, respectively.

The details of the modeled carrier flow are given in Table  2. 
Five different carrier flows were simulated in total. Of the activities 
listed in the experiments, only the speaking, singing, and coughing 
activities were modeled. These activities account for the majority of 
the total exhalation time and have relatively well-defined sources. 
The carrier flow source terms for talking and singing were imple-
mented as finite duration square waves which did not fully account 
for the cyclic nature of speech or breathing patterns. To examine 
the effect of exhalation occurring for only part of the total dura-
tion while speaking and singing, modified flows were defined which 
aimed to capture the maximum velocity projecting the particles, 
rather than an average. For modified speaking (Source 2), the du-
ration of exhalation was halved and the average flow rate doubled. 
For modified singing (Source 4), the duration was halved, the aver-
age flow rate doubled and then scaled as described in the following 
section. Coughs are exhalations for their full duration which were 

approximated as a triangular wave having a duration of 0.4 s and a 
peak velocity at 0.08 s.15,16 The carrier flow velocity was spatially 
varied over the mouth opening within the initial expansion angle, 
or half cone angle, of the jet, shown in Figure 2. These values were 
taken from Stettler et al.1 for speaking and singing and Gupta et al.15 
for coughing. In addition to the humid air flow, an amount of 5% 
CO2

45 was included in each carrier flow source term, to explore the 
dispersion of the carrier flow within the room.

3.6  |  Specification of the particle size distribution

The Bronchiolar, Laryngeal, and Oral “BLO” model13 was used to 
describe the distribution of exhaled particles. The BLO model de-
scribes the particle size distribution for complete exhalations using 
a tri-modal distribution fitted to experimental measurements of 
particles from coughing and speaking reported by Johnson and 
Morawska46 and Morawska et al.47.

The number concentration, Cn, is the number of particles with 
diameters in the interval d Log D per cm3 of exhaled breath, where 
droplet diameters, D, are measured in µm and d Log D represents 
a bin width that is constant in base 10 log space. The three modes 
correspond to sources of exhaled particles within the respiratory 
system: bronchiolar, laryngeal, and oral. Each mode is fitted with a 
log-normal distribution. Johnson et al.13 show parameterization of 
the distribution with correction factors for dilution and evaporation 
from measurements made using Aerodynamic Particle Sizers and a 
spread factor for droplet diameters measured from droplet deposi-
tion. The corrected parameters used in these simulations for geo-
metric mean diameter (GMD), geometric standard deviation (GSD), 
and Cn are shown in Table  3; these are the values suggested by 
Stettler et al.1 to describe speaking.

To describe the particles in an exhalation, the droplet diameter 
range was divided into size bins, allowing the number of particles 
per cm3 of exhaled gas and vapor in each size bin to be calculated. 
The number of particles exhaled for each size bin during an exha-
lation was the product of the exhalation volume, derived from the 

(7)d Cn

d LogD
= ln (10) ×

3
�

i=1

�

Cni
√

2�lnGSDi

�

exp

�
�

lnD− lnGMDi

�2

2
�

lnGSDi

�2

�

F I G U R E  2 Initial jet expansion angles 
viewed from the side and front. The front 
projection is the same for both speaking 
and coughing
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parameters in Table 2, and the count density for the size bin. The 
total number of particles was distributed throughout the duration 
of each exhalation, and particles were introduced during each of the 
timesteps used to resolve the exhalation flow. It was assumed that 
the particle size distribution does not change during exhalations48 
and that the number of particles exhaled varied only with the exha-
lation flow rate, effectively representing a constant concentration. 
It was also assumed that the particle velocity vector at the point of 
injection was equal to the carrier flow velocity at that point. Particles 
were introduced at random locations over the mouth area and at a 
random time fraction of each injection time step.

The number of particles emitted during each timestep was calcu-
lated as the fraction of the total volume exhaled during the duration 
of the timestep. Speaking and singing were described by the uniform 
flow rates given in Table 2, and the exhaled droplets were distrib-
uted evenly across the timesteps. For the coughing source having 
a triangular waveform, the number of particles introduced at each 
timestep was determined by the fraction of the total volume exhaled 

during that time interval. At each timestep, the sizes of the particles 
exhaled were independently sampled from the distribution for the 
whole of the exhalation. Over the duration of the exhalation, the 
sampled distribution approached the specified distribution.

The BLO model only gives particle size distributions for speaking 
and coughing. To reflect the fact that singing will produce a differ-
ent source characteristic from speaking, a modified singing source 
(Source 4 in Table  2) was introduced. Gregson et al.14 presented 
measurements of speaking and singing made using an Aerodynamic 
Particle Sizer. This instrument only measured particles up to a di-
ameter of 20 µm, and no corrections were made for the effect of 
evaporation on the droplet sizes. The measurements presented by 
Gregson et al.14 all used the same equipment and experimental ap-
proach, allowing comparison of the measurements of speaking and 
singing. Gregson et al.14 found that the shape of the droplet distri-
bution was similar to the BLO speaking model of Johnson et al.13. 
For the modified singing source (Source 4), the speaking exhalation 
flow rate was doubled then scaled by the ratio of the number density 
of the bronchiolar modes for speaking (N = 0.74 cm−3) and singing 
(N = 1.024 cm−3) at 90–100 dB.

In a Lagrangian tracking simulation, each computational particle 
represents a statistical “parcel” of particles. For computational ef-
ficiency, a limited number of parcels are usually modeled and each 
parcel typically represents many individual particles. It is usually 
advantageous when simulating sprays to track a “statistically sig-
nificant” number of particles.49,50 Initial simulations with the BLO 
model were performed with one particle per parcel (referred to as 
1× oversample), so that the count of modeled particles reflected 
the total count expected for each activity and each simulation ef-
fectively represents one realization of each activity. When fitting 
the BLO model, the full range of exhaled droplet diameters was 

TA B L E  2 Specification of the carrier flow using the speaking parameters from Stettler et al1

Source and number (1) Speakinga
(2) Modified 
speakingb (3) Singingc (4) Modified singingd (5) Coughinge

Description Read 1–100 Read 1–100 Happy birthday ×2 Happy birthday ×2 One cough

Diameter (m) 0.015 0.015 0.015 0.015 0.0225

Jet expansion angle θ1 (deg) −15 −15 −15 −15 15

Jet expansion angle θ2 (deg) 15 15 15 15 40

Jet expansion angle φ1 (deg) 90 90 90 90 90

Temperature (C) 34 34 34 34 34

RH (−) 100 100 100 100 100

Minute vol avg (L/min) 12 24 12 32 180

Duration (s) 50 25 30 15 0.4

Peak time (s) Steady Steady Steady Steady 0.08

Avg velocity (m/s) 1.11 2.22 1.11 2.99 7.5

Peak velocity (m/s) 1.11 2.22 1.11 2.99 15

aSource data taken from Stettler et al.,1 with an assumed duration.
bSource data taken from Stettler et al.,1 duration halved, flow rate doubled.
cThe speaking source was used, with an assumed duration.
dModified singing source, based on particle count (see the following section).
eApproximated to a triangular waveform from Gupta et al.15,16

TA B L E  3 Parameters of the BLO model

Mode 1, 
bronchiolar

Mode 2, 
laryngeal

Mode 3, 
oral

Speaking

GMDi (µm) 1.61 2.40 144.7

GSDi (−) 1.30 1.66 1.80

Cni (cm−3) 0.0540 0.0684 0.00126

Coughing

GMDi (µm) 1.57 1.60 123.3

GSDi (−) 1.25 1.68 1.84

Cni (cm−3) 0.0903 0.142 0.0160
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broken into 25 equal increments on a base 10 log scale. In some of 
the increments in the oral mode and between the oral mode and 
the smaller diameters of the bronchiolar and laryngeal modes, the 
total number of particles in the increments was small. Sampling from 
the distribution meant that some increments contained no particles 
or only one or two particles. To improve the representation of the 
distribution, simulations were performed using 10 times the number 
of parcels of particles (referred to as 10× oversample) and the re-
sults were scaled accordingly. An additional simulation of one cough 
was carried out with 100× oversample, but this did not significantly 
change deposition patterns compared to the 10× oversample simu-
lation. Therefore, 10× oversample counts were used for subsequent 
simulations. The total parcel counts are shown in Table 4.

3.7  |  Simulation strategy

Simulating all the activities sequentially (i.e., coughing, speaking, 
singing) in a single simulation would result in having to track a large 
number of particles and would also incur a substantial computa-
tional overhead from having to resolve in time each activity in the 
sequence. For practical purposes, the simulations were carried 
out individually, where single simulations of one activity (cough-
ing, talking, or singing) were run with subsequent output of parti-
cle fates over a 10-min period, corresponding to the experiment, 
and the particle data were concatenated in post-processing as 
shown in Table 5. One drawback with this method of simulation 
is that potential additional dispersive effects of subsequent ac-
tivities were not accounted for. To further reduce the computing 
overhead, each 10-min simulation period was divided into three 
phases: a 30 s initialization phase with a 1 s time step, the activ-
ity phase with a finer time resolution of 0.01 s (coughing) or 0.1 s 
(speaking/singing), and a settling phase lasting the remainder of 
the duration again having a 1  s time step. These were based on 
an assessment of the sensitivity of the results to the time step 
length. In the settling period, the effects of subsequent activities 
and breathing were ignored.

4  |  RESULTS

The experimental data were presented as the mean number of 
bacterial colony-forming units (CFUs) recovered from each sam-
ple plate and aerosol sampler, with error bars to represent one 
standard deviation. This was considered an appropriate measure 
for comparison against computational results. It should be noted 
that the generation of bacteria was variable by person; one partici-
pant generated 39% of all deposited bacteria and 29% of airborne 
particles, and 50% of participants generated 80% of deposited and 
airborne bacteria.

In comparing the computational results to experimental data, it 
was assumed that the collection efficiency of the aerosol samplers was 
100% for all sizes. Sample results were compared with the predicted 
concatenated cumulative particle dataset, where for the idealized case 
it is assumed that each sampled computational particle results in a 
bacterial colony and the number of sampled computational particles 
can be directly compared to the experimental data. For the kth sample 
location, the total number of particles, Nk, can be defined as follows:

where Nparcels,k is the number of sampled parcels and Np is the num-
ber of particles per parcel. An alternative measure is to compute 
relative counts which can be used to assess the level of dispersion 
among the sample locations. The first centerline settle plate (PCL1) 
was chosen to normalize the results, to give a normalized count, 
Nnorm,k, as follows:

Results from the experiment were normalized in the same way, 
using the count on the first settle plate. The viability of airborne 
bioaerosols is influenced by a number of factors51 so the count of 
modeled particles may tend to overestimate the number of viable 
particles emitted. In this case, viable refers to the initial proba-
bility of a particle containing viable material, it does not account 
for further effects such as culturability, damage due to drying, 
or the possibility that the final dried particle diameter might be 
smaller than the dimension of a bacteria. The mean number of 
colony-forming units in a particle of initial diameter, d0, can be 
expressed by52:

where Cb is the mean number of aerobic bacteria cultured and was esti-
mated from the experiments to be 7.37 × 107 CFU/ml (SD: ±6.43 × 107, 
range 1.5 × 107 CFU/ml to 2.37 × 108 CFU/ml). Assuming a Poisson 
distribution, the probability that a particle will contain at least one CFU 
is given by52:

(8)Nk = Nparcels,k × Np

(9)Nnorm,k =
Nparcels,k

Nparcels,PCL1

(10)� =
�

6
d3
0
Cb

(11)P = 1 − e−�

TA B L E  4 Total parcel counts used in the simulations

Total parcel count

1× 
oversample 10× oversample

100× 
oversample

One cough 310 3093 30 947

Speaking 1211 12 130 -

Singing 726 7278 -

TA B L E  5 Method for concatenating the particle data

Name Speaking Singing Coughing

Standard source 2 × source 1 1 × source 3 6 × source 5

Modified source 2 × source 2 1 × source 4 6 × source 5
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Figure 3 is a plot showing the variation of P with particle diame-
ter for the range of Cb given above. The number of viable particles, 
Nviable,k, at the kth sample location was calculated by:

4.1  |  Overall comparisons in air and on surfaces

Comparisons between the measured experimental microbial data 
and simulated particle counts in air and on surfaces are shown in 
Figure  4. Both experimental and computational results show the 
same trends, with greater deposition onto surfaces closer to the 
source than at a further distance. Experimental results also clearly 
show that exhaled bacteria are present in the air and on surfaces 
at 2 m from the source. The number of bacteria that deposit at 2 m 
is around a quarter of the number at 0.2 m, but the particle count 
extracted from the air in this small unventilated chamber is actually 
greater at 2  m than at 1  m, and greater than that deposited onto 
surfaces.

Results for the centerline settle plates are shown in Figure 4A, 
using the idealized particle count given by Equation 8. Particle count 
on the closer plates is overpredicted with those on the first plate 
overpredicted by a factor of five. One reason for this overprediction 
is that every particle that lands on a plate is counted in the simula-
tion, whereas in the experiment, only those that form a culture can 
be recorded. The modified source terms for speaking and singing 
resulted in slightly increased deposition on the nearest plates, due 
to the increased particle input velocity. However, most of the par-
ticles deposited on the plates were from the coughing activity and 
the contribution of speaking and singing to the total count on the 
plates remained small. Figure 4B shows a comparison of the viable 
particles for the centerline plates, using Equation 12. The results are 
the same as the idealized case for the first two plates where the 

rapid deposition of larger particles dominate. Further away, the pre-
dicted viable count decreases compared to the idealized case. The 
results with the normalized particle count using Equation 9 shown 
in Figure  3C show that the simulated rate of decay with distance 
is steeper than seen in the experiments with a greater number of 
bacteria collected on the more distant plates than predicted. This is 
likely to be a result of the variability within the experiments, includ-
ing individual differences in exhalation velocities and particle size 
ranges which was not fully replicated in the simulation. The simu-
lated input carrier flow was fixed in each case such that variability 
was only included in the particle oversampling, which only accounts 
for part of the overall variability. The order of magnitude difference 
in counts on the plates observed between individuals is not repre-
sented in the model. In the model, no particles were predicted on the 
off-axis plates to the right of the subject and so are not shown in the 
figures. A small number of particles were collected on these plates 
in the experiment.

Results for the Andersen air samplers are shown in Figure 4D-
F. The model overpredicted absolute counts at the inline samplers 
(AS1, AS2), see Figure 4D, while no particles were predicted to be 
collected by the off-axis sampler to the left of the person (AS3) 
although samples were collected in the experiments. Figure  4E 
shows the adjusted results for the Andersen air samplers, ac-
counting for the viability of the particles are significantly dif-
ferent. In the model, these samplers collected only the smallest 
particles (<10 μm), which have a lower probability of containing vi-
able bacteria. It is likely that these results are heavily influenced by 
the initial particle size distribution. Figure 4F shows that relative 
collection was around three times higher at the 1 m sampler in the 
simulation, whereas at 2 m the experimental and computational 
results are similar. Further analysis of the model results showed 
that a chamber length recirculation, driven by the subject's ther-
mal plume, was transporting particles from the ceiling toward the 
end of the room and down the end wall (Figure 5). This may explain 
why the second Andersen sampler (AS2) in the experiment col-
lected a relatively large number of particles.

In the model, this recirculation also resulted in an increased 
predicted particle count in the slit sampler adjacent to the end 
wall. The air sampler results suggest that the dispersion off the 
centerline axis is being underpredicted. There are several reasons 
why this may have occurred. Firstly, it is likely that there were 
small but finite ventilation flows in the experimental chamber that 
were not captured by the model, such as leaks through the door 
or ventilation panels, air movements due to the movement of the 
subjects, residual air movements from setting up the experiments 
or residual air movements from ventilation. Secondly, in the ex-
periments, each activity was carried out in succession and this 
would have had a mixing effect on the particles exhaled from the 
previous activities. This effect would not have been captured in 
the simulations, where each activity was carried out in isolation. 
Finally, the intra-person variability would have resulted in a wider 
spread of data, while parameters such as the carrier flow and pro-
jection angles were fixed in the simulations.

(12)Nviable,k = Np

∑

k

P

F I G U R E  3 Variation of the probability, P, that a particle will 
contain at least one CFU with particle diameter
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4.2  |  Analysis of particle sizes

Figure 6 shows the partitioning of sampled particle sizes from the 
CFD simulations on the surfaces and collected in the air samples, 
for each individual activity. In each case, the count refers to the 
number of parcels sampled at each location and these are com-
pared with the input number of parcels shown in blue. The diam-
eters in Figure 6 are the initial diameters of the particles at their 
time of injection, for both input and sampled particles; although 
the diameter change due to evaporation is modeled, the compar-
ison is made using the initial diameters to illustrate the ultimate 
fate of different sizes of exhaled particles. For clarity, the surface 
samples were grouped together into “Centreline plates” (orange), 
“Centreline tables” (purple), “Right table” (green), and “Floor” (light 
blue). The right hand plates are not included in these plots, because 
no particles were predicted to deposit there. The air samples are 
recorded at “AS1” (orange), “AS2” (yellow), “SS1” (purple), and “SS2” 
(green), see Figure 1B. The general trend is that the larger parti-
cles, representing the oral mode of production, were deposited on 
surfaces. The predicted air samples were generated entirely by the 
bronchiolar and laryngeal modes from the input BLO particle dis-
tribution. The exception was the cough, in which most of the full 
range of sizes was projected on to the surfaces. This partitioning of 
diameters between surfaces and air samples appears to be, in part, 
due to the droplet diameter distribution in the BLO model which 
has a pronounced dip in the initial diameter distribution, around 
30 µm, between B and L, and O modes.

4.3  |  Influence of evaporation

Figure 7  shows the change in particle diameters from the original 
to the diameter at the point of sampling for the three activities. 
Sampled particles are those collected on a surface, extracted by the 
air samplers or those remaining suspended at the end of the simula-
tion period. The results suggest that the division between the B/L 

and O modes remains pronounced at the point that particles are 
sampled. Small particles have relatively fast evaporation timescales 
but longer persistence in the air. Larger particles have slower evapo-
ration timescales but are sampled relatively quickly on surfaces.

Figure 8 shows, for the model, the ratio of the number of sam-
pled particles of each diameter to that at the source for each of the 
air samplers. The horizontal lines represent the analogous ratio of 
the total volume of CO2 extracted at a sample point to the total 
volume of CO2 introduced at the mouth. The off-axis air sampler 
(AS3) to the left of the subject is not included in these plots as no 
particles were predicted at that location. It is clear, for the num-
ber of particles simulated, that the CO2 is more diffusive than the 
particles. This can be seen as, overall, the ratio of sampled to input 
CO2 is lower than for the particles. Some CO2 reached the off-axis 
air sampler (AS3) to the left of the subject for speaking and sing-
ing, though this was a small amount and only occurred in the final 
stages of the simulations. The proportioning of CO2 and particles 
among the samplers shows similar patterns, that is, more particles 
and CO2 were recorded in samplers close to the source (AS1, SS1) 
for coughing, while more were registered at the furthest sampler 
(SS2) for speaking and singing.

5  |  DISCUSSION

The CFD-based exhalation model developed in this study takes into 
account exhalation flows, particle size distributions, evaporation ef-
fects, and the fraction of microbial material contained within respir-
atory particles. The model follows the Euler-Lagrange framework of 
previous CFD studies and therefore would be expected to perform 
in a similar way to those models. Validation of complete exhalation 
models of this type is challenging due to the lack of suitable experi-
mental data and reliance is placed on validation of individual com-
ponents of a model (exhalation jet, indoor air flows). Comparisons 
with a human participant study showed that the model is able to 
produce realistic predictions of microbial surface deposition and 

F I G U R E  4 Comparison of measured (mean + SD) microbial counts (yellow) with simulated predicted counts at the sample locations using 
different metrics and the standard source (blue) and modified source (orange). Cumulative counts were obtained from the concatenated 
datasets for each activity at each location. (A and D) show actual simulated number of particles, (Equation 8). (B and E) show predicted 
number of viable particles, (Equation 12), (C and F) show normalized count (Equation 9)

F I G U R E  5 Contour plots of velocity 
magnitude, in m/s, and particle locations, 
at two time intervals after the end of 
speaking. The contours are clipped to 
a maximum of 0.2 m/s to highlight the 
recirculation flow induced by the thermal 
plume
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F I G U R E  6 Comparison of sampled particle diameters with the input diameters. On the left (A-C) are all of the surface samples for 
coughing, talking, and singing, respectively, and on the right (D-F) are the corresponding air samples. In each case, the diameter is the initial 
diameter of the particles at their time of injection, irrespective of their diameter at the point of sampling
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concentrations in air, although it may slightly underpredict the dis-
tance traveled by both aerosols and droplets. Given the uncertain-
ties involved in simulating these experiments, the computational 

results obtained on the centerline were particularly encouraging. 
The discrepancies seen off-axis require further investigation to un-
derstand the variability in the experimental study deposition results. 
The simulations are based on a mostly uniform set of conditions and 
therefore will not capture much of the intra- and inter-person vari-
ability seen in the volunteer experiments. In a modeling study, the 
effects of this variability can be further understood through a sensi-
tivity analysis of the type reported by Ho.26 However, this would be 
a significant computational undertaking without making numerous 
simplifying assumptions.

The approach taken in the current modeling study was to im-
plement a practicable estimate for a source term for different ex-
halation activities, and to simulate activities separately and sum the 
effects rather than simulate sequentially. Some variability has been 
included through the use of 10-time oversampled particles, giving a 
greater spread of particle injection times and velocities. However, 
the off-axis samples are likely to be influenced by aspects of the ven-
tilation flow that were not accounted for in the simulations where 
it was assumed that the flow of air drawn by the samplers was bal-
anced by that through a single vent panel. In practice, there will have 
been small but finite air flows through the doors and other ventila-
tion controls which may have increased mixing within the chamber. 
In addition, the thermal conditions in the experiment may differ from 
the idealized case simulated and the sequence of vocal activities in 
the experiment would contribute to the overall mixing in the room.

The model results depend on a number of assumptions and 
input models, including the need to specify emission rates of re-
spiratory droplets and aerosols and exhalation parameters such as 
velocity and angle of the jet. The use of the BLO model13 resulted 
in a fairly clear distinction between particles that would remain 
airborne and those which deposit relatively quickly,however, it is 
noted that the bimodal distribution is not seen in other measured 
data12 and may be related to how the different size categories of 
respiratory particles are measured and sampled. The BLO model is 
based on data collected over multiple studies, with multiple volun-
teers and using different measuring techniques. It is representative 
across the range of measured particle sizes. However, it is recog-
nized that there is an inherent variability in such measurements 
and that other particle size distributions could be used. The model 
also assumed that microorganisms were uniformly distributed by 
volume, which may not be the case if there is preferential aerosol-
ization into smaller or larger sizes due to hydrophobicity effects, or 
clumping of bacteria.

Despite these uncertainties, the model results showed similar 
behavior to the experiments in that deposition was greater at 1 m 
than at 1–2  m from source and the results from the air samplers 
suggested that fine (approx. 0.4–10 µm) particles would eventually 
be uniformly suspended in the room given sufficient mixing time. 

F I G U R E  7 Comparison of model particle counts for the initial 
(blue) and sampled (orange) diameters. In addition to deposited 
and extracted particles, any suspended particles at the end of the 
simulations were counted as sampled. The darker shaded bars are 
where both input and samples overlap
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This suggests that a computational model based on parameters from 
measured aerosol and exhalation data and the physics of droplet 
evaporation can provide realistic representations of the fate of ex-
haled microbial particles.

5.1  |  Implications for SARS-CoV-2 virus 
transmission

The model presented here is compared to oral and respiratory bac-
teria rather than the SARS-CoV-2 virus, as it was not feasible to carry 
out experiments with COVID-19 patients. Although bacteria are 
larger than viruses (typically 1–2 μm in diameter compared to around 
0.07–0.09 μm), respiratory aerosols carrying virus will also carry the 
same salts, surfactants, and proteins in our study and will also carry 
oral and respiratory tract bacteria. Viral aerosols may be able to evap-
orate to smaller sizes, but many will still be likely to be a similar size 
to those measured in this study. Estimates of SARS-CoV-2 viral load 
in respiratory fluid span many orders of magnitude, and the value de-
pends on a number of factors including the source of the respiratory 
fluid, the stage of the disease, and the sampling method used to col-
lect the data. Stettler et al.1 report values ranging from an average 
of 1.18 × 106 copies/ml of sputum to as high as 1.34 × 1011 copies/
ml based on data from nasopharyngeal and throat swabs, while Chen 
et al.53 report from a meta-analysis of 64 studies that the 90th per-
centile viral load was 1 × 109.84 copies/ml. Information on the decay 
of virus in exhaled droplets is also sparse.54 However, the values pro-
vided may enable initial estimates of the range of viral exposure that 
may be expected in both deposited droplets and aerosols. The cur-
rent model has shown that surface deposition and air concentration 
reduce with distance and confirms guidance that indicates that there 
is likely to be a reduced direct inhalation exposure or fomite risk to 
someone over 2 m away face-to-face with the source. However, it is 
recognized that fomite risk remains after a person has moved allowing 
others to be potentially exposed. The model also highlights the po-
tential for greater exposure in a poorly ventilated space, with no clear 
relationship between particles that remain airborne and distance in 
the results presented here. The current study aimed to develop and 
validate a methodology that can be used for more extensive airborne 
transmission studies such as exploring the influence of measures such 
as room internal layout, social distancing, physical screens and barri-
ers and ventilation strategies. The model outputs may also provide 
data on inhalation exposure with distance and surface contamination 
for faster running infection risk models such as those used to model 
transmission in healthcare55 and on a cruise ship.56 Further work is 
needed to quantify virus decay in deposited or airborne droplets and 
to consider dose–response in a susceptible individual.

6  |  CONCLUSIONS

A CFD model of exhalations has been developed and compared 
with experimental data for the dispersion of bacteria from subjects 

F I G U R E  8 Ratio of the modeled number of air sampled particles 
to the input number of particles, by diameter, for (A) a cough, (B) 
talking, and (C) singing. The horizontal lines represent the ratio of 
sampled to input CO2 concentration. The CO2 ratios at AS1 and SS1 
for one cough are overlaid
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coughing, speaking, and singing in a room. On the basis of normal-
ized particle count, to assess the relative dispersion among the 
sample locations, the model performed reasonably well, particu-
larly given the uncertainties involved at all stages of the modeling. 
There was also relatively good agreement in the ratio of particle 
counts among the surface samples and air samples in front of the 
subject, although deposition on sample plates close to the par-
ticipants and the rate of reduction of particle count with distance 
were both overpredicted. Off-axis dispersion was relatively poorly 
predicted, suggesting that the dispersion in the test chamber as a 
whole was being underpredicted, probably due to air movement 
during the experiments that were not accounted for in the model. 
The model appeared to capture a flow recirculation that carried 
particles along the upper part of the chamber and down toward 
the air samplers. This effect was more pronounced in the air sam-
pler adjacent to the end wall (SS2) than the one at the end of the 
tables (AS2).

Comparison of absolute bacterial colony counts showed that 
the model performed relatively well, given the variability in initial 
bacterial load and uncertainty in particle size distributions. When 
the bacterial load in the particles was simulated by applying a 
Poisson distribution based on the initial particle diameter, the re-
sults became skewed toward deposition on the sample plates. An 
explanation for this is the relatively small diameter airborne par-
ticles predicted by the BLO model. The model results showed a 
distinct partitioning between 0.4–10 µm particles which remained 
airborne and 30–600  µm particles which deposited on surfaces, 
especially in the case of speaking and singing. This effect was less 
pronounced in coughing, which tended to direct particles of all di-
ameters onto the surfaces.

Both the model and experiments showed similar trends and 
clearly demonstrated that exhaled microorganisms can travel 2 m 
and remain suspended in the air within a room. The model results 
showed similar behavior to the experiments in that significant depo-
sition was recorded at around 1 m from the source but then dropped 
off quickly over the next meter. The results from the air samplers 
suggested that fine particles would eventually be uniformly sus-
pended in the test chamber given sufficient mixing time. Comparison 
of predicted and experimental results was encouraging and has pro-
vided confidence that the computational methodology can be used 
for more extensive airborne transmission studies. In particular, an 
aim for future work would be to determine how different source 
terms translate into viral loadings in the environment.
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