230 research outputs found

    Mechanisms for the effect of electric and magnetic fields on biological systems Semiannual status report, Jan. 1969 - Jun. 1969

    Get PDF
    Electric field effects on dielectric properties and molecular arrangements of cholesteric liquid crystal

    Mechanisms for the effect of electric and magnetic fields on biological systems Semiannual status report, Jun. - Dec. 1969

    Get PDF
    Electric and magnetic field effects on structure and properties of cholesteric liquid crystal

    Unwinding of a cholesteric liquid crystal and bidirectional surface anchoring

    Get PDF
    We examine the influence of bidirectional anchoring on the unwinding of a planar cholesteric liquid crystal induced by the application of a magnetic field. We consider a liquid crystal layer confined between two plates with the helical axis perpendicular to the substrates. We fixed the director twist on one boundary and allow for bidirectional anchoring on the other by introducing a high-order surface potential. By minimizing the total free energy for the system, we investigate the untwisting of the cholesteric helix as the liquid crystal attempts to align with the magnetic field. The transitions between metastable states occur as a series of pitchjumps as the helix expels quarter or half-turn twists, depending on the relative sizes of the strength of the surface potential and the bidirectional anchoring. We show that secondary easy axis directions can play a significant role in the unwinding of the cholesteric in its transition towards a nematic, especially when the surface anchoring strength is large

    Impact of myocardial injury on regional left ventricular function in the course of acute myocarditis with preserved ejection fraction: insights from segmental feature tracking strain analysis using cine cardiac MRI

    Full text link
    The aim of this study was to provide insights into myocardial adaptation over time in myocyte injury caused by acute myocarditis with preserved ejection fraction. The effect of myocardial injury, as defined by the presence of late gadolinium enhancement (LGE), on the change of left ventricular (LV) segmental strain parameters was evaluated in a longitudinal analysis. Patients with a first episode of acute myocarditis were enrolled retrospectively. Peak radial (PRS), longitudinal (PLS) and circumferential (PCS) LV segmental strain values at baseline and at follow-up were computed using feature tracking cine cardiac magnetic resonance imaging. The change of segmental strain values in LGE positive (LGE+) and LGE negative (LGE−) segments was compared over a course of 89 ± 20 days. In 24 patients, 100 LGE+ segments and 284 LGE− segments were analysed. Between LGE+ and LGE− segments, significant differences were found for the change of segmental PCS (p < 0.001) and segmental PRS (p = 0.006). LGE + segments showed an increase in contractility, indicating recovery, and LGE− segments showed a decrease in contractility, indicating normalisation after a hypercontractile state or impairment of an initially normal contracting segment. No significant difference between LGE+ and LGE− segments was found for the change in segmental PLS. In the course of acute myocarditis with preserved ejection fraction, regional myocardial function adapts inversely in segments with and without LGE. As these effects seem to counterbalance each other, global functional parameters might be of limited use in monitoring functional recovery of these patients

    The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay

    Get PDF
    Neutron beta decay is one of the most fundamental processes in nuclear physics and provides sensitive means to uncover the details of the weak interaction. Neutron beta decay can evaluate the ratio of axial-vector to vector coupling constants in the standard model, λ=gA/gV\lambda = g_A / g_V, through multiple decay correlations. The Nab experiment will carry out measurements of the electron-neutrino correlation parameter aa with a precision of δa/a=103\delta a / a = 10^{-3} and the Fierz interference term bb to δb=3×103\delta b = 3\times10^{-3} in unpolarized free neutron beta decay. These results, along with a more precise measurement of the neutron lifetime, aim to deliver an independent determination of the ratio λ\lambda with a precision of δλ/λ=0.03%\delta \lambda / \lambda = 0.03\% that will allow an evaluation of VudV_{ud} and sensitively test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long asymmetric spectrometer that guides the decay electron and proton to two large area silicon detectors in order to precisely determine the electron energy and an estimation of the proton momentum from the proton time of flight. The Nab spectrometer is being commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source at Oak Ridge National Lab. We present an overview of the Nab experiment and recent updates on the spectrometer, analysis, and systematic effects.Comment: Presented at PPNS201

    Resilience trinity: Safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority

    The fundamental constants and their variation: observational status and theoretical motivations

    Full text link
    This article describes the various experimental bounds on the variation of the fundamental constants of nature. After a discussion on the role of fundamental constants, of their definition and link with metrology, the various constraints on the variation of the fine structure constant, the gravitational, weak and strong interactions couplings and the electron to proton mass ratio are reviewed. This review aims (1) to provide the basics of each measurement, (2) to show as clearly as possible why it constrains a given constant and (3) to point out the underlying hypotheses. Such an investigation is of importance to compare the different results, particularly in view of understanding the recent claims of the detections of a variation of the fine structure constant and of the electron to proton mass ratio in quasar absorption spectra. The theoretical models leading to the prediction of such variation are also reviewed, including Kaluza-Klein theories, string theories and other alternative theories and cosmological implications of these results are discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy

    Species Difference of CD137 Ligand Signaling in Human and Murine Monocytes

    Get PDF
    BACKGROUND: Stimulation of CD137 ligand on human monocytes has been shown to induce DC differentiation, and these CD137L-DCs are more potent than classical DCs, in stimulating T cell responses in vitro. To allow an in vivo evaluation of the potency of CD137L-DCs in murine models we aimed at generating murine CD137L-DCs. METHODOLOGY/PRINCIPAL FINDINGS: When stimulated through CD137 ligand murine monocytes responded just as human monocytes with an increased adherence, morphological changes, proliferation and an increase in viable cell numbers. But CD137 ligand signaling did not induce expression of inflammatory cytokines and costimulatory molecules in murine monocytes and these cells had no T cell stimulatory activity. Murine monocytes did not differentiate to inflammatory DCs upon CD137 ligand signaling. Furthermore, while CD137 ligand signaling induces maturation of human immature classical DCs it failed to do so with murine immature classical DCs. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that both human and murine monocytes become activated by CD137 ligand signaling but only human and not murine monocytes differentiate to inflammatory DCs
    corecore