1,161 research outputs found

    Multipole Expansion for Relativistic Coulomb Excitation

    Get PDF
    We derive a general expression for the multipole expansion of the electro-magnetic interaction in relativistic heavy-ion collisions, which can be employed in higher-order dynamical calculations of Coulomb excitation. The interaction has diagonal as well as off-diagonal multipole components, associated with the intrinsic and relative coordinates of projectile and target. A simple truncation in the off-diagonal components gives excellent results in first-order perturbation theory for distant collisions and for beam energies up to 200 MeV/nucleon.Comment: 3 figures, Accepted for publication in Phys. Rev.

    Equivalence of the long-wavelength approximation and the truncated Taylor expansion in relativistic Coulomb excitation

    Get PDF
    The long-wavelength approximation and the truncated Taylor expansion are frequently used in the theory of relativistic Coulomb excitation to obtain multipole expansions of the interaction. It is shown in this note that these two approximations are exactly equivalent.Comment: 5 page

    Geometrical Optics Formalism to Model Contrast in Dark-Field X-ray Microscopy

    Full text link
    Dark-field X-ray microscopy is a new full-field imaging technique that nondestructively maps the structure and local strain inside deeply embedded crystalline elements in three dimensions. Placing an objective lens in the diffracted beam generates a magnified projection image of a local volume. We provide a general formalism based on geometrical optics for the diffraction imaging, valid for any crystallographic space group. This allows simulation of diffraction images based on micro-mechanical models. We present example simulations with the formalism, demonstrating how it may be used to design new experiments or interpret existing ones. In particular, we show how modifications to the experimental design may tailor the reciprocal-space resolution function to map specific components of the deformation gradient tensor. The formalism supports multi-length scale experiments, as it enables DFXM to be interfaced with 3DXRD. The formalism is demonstrated by comparison to experimental images of the strain field around a straight dislocation

    Double Giant Dipole Resonance in ^{208}Pb

    Get PDF
    Double-dipole excitations in ^{208}Pb are analyzed within a microscopic model explicitly treating 2p2h-excitations. Collective states built from such 2p2h-excitations are shown to appear at about twice the energy of the isovector giant dipole resonance, in agreement with the experimental findings. The calculated cross section for Coulomb excitation at relativistic energies cannot explain simultaneously the measured single-dipole and double-dipole cross sections, however.Comment: 7 pages, Latex, 5 postscript figure

    Breakup of 17^{17}F on 208^{208}Pb near the Coulomb barrier

    Full text link
    Angular distributions of oxygen produced in the breakup of 17^{17}F incident on a 208^{208}Pb target have been measured around the grazing angle at beam energies of 98 and 120 MeV. The data are dominated by the proton stripping mechanism and are well reproduced by dynamical calculations. The measured breakup cross section is approximately a factor of 3 less than that of fusion at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure

    Variation of Accumulation Rates Over the Last Eight Centuries on the East Antarctic Plateau Derived from Volcanic Signals in Ice Cores

    Get PDF
    Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963- 2007/08 being up to 25 % different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20 % over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation

    A Piglet Model for Detection of Hypoxic-Ischemic Brain Injury with Magnetic Resonance Imaging

    Get PDF
    Munkeby BH, de Lange C, Emblem KE, Bjørnerud A, Kro GAB, Andresen J, Winther-Larssen EH, Løberg EM, Hald JK. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol 2008;49:1049–1057

    Region of hadron-quark mixed phase in hybrid stars

    Get PDF
    Hadron--quark mixed phase is expected in a wide region of the inner structure of hybrid stars. However, we show that the hadron--quark mixed phase should be restricted to a narrower region to because of the charge screening effect. The narrow region of the mixed phase seems to explain physical phenomena of neutron stars such as the strong magnetic field and glitch phenomena, and it would give a new cooling curve for the neutron star.Comment: to be published in Physical Review
    corecore