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Abstract 

A 3D Finite Element method (FEM) model for investigation of the anisotropic mechanical behaviour of austenitic 

stainless steel during nitriding is presented. The model considers the non-linear concentration dependent diffusion of 

nitrogen including trapping by chromium, the surface reaction, elastic and plastic anisotropy and influences on 

thermodynamics (solubility) and diffusion kinetics. Large differences in the nitrided case thickness have previously 

been attributed to the elastic and plastic anisotropy, which in turn affects the diffusion and solubility properties of 

nitrogen. The two mechanically distinctive grain orientations <001> and <111> are simulated and the stress, strain 

and concentration profiles are discussed and compared to experimental findings. 

Keywords 

Nitriding, diffusion, stresses, plasticity, anisotropy 

1 Introduction 

Low temperature nitriding of austenitic stainless steel leads to an advantageous combination of 

corrosion, wear and fatigue performance, which can be attributed to the development of a case of 

expanded austenite with a nitrogen composition-depth profile and an associated residual stress-

depth profile [Somers, Christiansen 2015]. The stress arises from the volume expansion of the 

austenite by dissolving nitrogen, which is constrained by the untreated bulk. Previous work has 

demonstrated that a realistic prediction of the composition and stress profile from the nitriding 

parameters temperature, nitriding potential and time is not trivial [Jespersen et al. 2016, 

Kücükyildiz et al. 2017]. Such numerical modelling requires the consideration of the effects of 

mechanical (elastic) stress on the diffusive flux and the nitrogen solubility as well as the elastic 

and/or plastic accommodation of the volume expansion and the nitrogen concentration 

dependent thermal contraction during cooling after nitriding. Experimental observations for 

polycrystalline samples have shown that the case depth can vary from grain to grain. Arbitrarily, 

this has been attributed to elastic anisotropy or even hkl-dependent diffusion coefficients 

[Martinavičius et al. 2009], which in principle is in conflict with the isotropy of diffusion in a 

cubic lattice. Earlier the hkl dependence of the case depth after plasma nitriding of a nickel base 

alloy was shown to scale with the anisotropy factor [He et al. 2003]. Most likely also the plastic 

anisotropy plays a role in the affecting the case depth. At least plastic deformation in fcc affects 

the strong elastic anisotropy in deformed expanded austenite leading to anomalous peak shifts of 

particularly the 200 reflection in X-ray diffractograms [Brink et al. 2017].  

So far, modelling attempts have only considered isotropic elastic and plastic behaviour of 

austenite. As is well-known austenite is strongly elastically anisotropic as reflected by a variation 

of the Young’s modulus by a factor three: the <111> direction is approximately three times as 

stiff as the <001> direction. Obviously also plastic deformation is anisotropic, as it depends on 
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the orientation of the (active) slip planes with respect to the stress state. During plastic 

deformation of an fcc grain, a rotation is induced [Bishop and Hill], which changes the effective 

critical resolved shear stress.  

In the present work, the effect of elastic and plastic anisotropy on the case depth of expanded 

austenite during low temperature gas nitriding of stainless steel is investigated by incorporating 

the hkl dependence of the elastic and plastic properties. To this end a coupled temperature-

displacement 3D Finite Element Model (FEM) was adopted and modified for solving diffusion 

problems rather than heat conduction.  

The anisotropic expansion of the expanded austenite lattice causes a stress state that depends on 

the orientation. By aligning the orientation of the surface normal along the <001> and <111> 

directions of the fcc lattice, two extreme cases of stress distributions and the consequent nitrogen 

depth-profiles are simulated. In this work, it is assumed that no lattice rotation takes place during 

plastic deformation. The results are compared with experimental findings. 

2 Methods 

The developed 3D model is based on the Finite Element Method using the commercial software 

Abaqus in combination with user-defined sub-routines. The simulation combines concentration-

dependent diffusion, trapping of nitrogen by chromium, lattice expansion, anisotropic elastic and 

plastic accommodation (including work hardening) of the lattice expansion and the kinetics of 

the transfer of nitrogen from gas to solid, i.e. the surface reaction. 

The concentration profile is calculated based on a modified Fick’s 2
nd

 law, with a non-linear 

diffusion coefficient and a composition-induced stress gradient, which induces an additional 

driving force for diffusion. The modified Fick’s 2
nd

 law was derived in [Jespersen, Hattel, 

Somers 2016], and in the current work is used without the temperature gradient effect due to the 

isothermal problem: 
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where    is the nitrogen concentration,    the nitrogen dependent diffusion coefficient,    the 

nitriding potential, R the gas constant,    the partial molar volume of nitrogen and T the 

temperature. The solubility of nitrogen in the surface is an inverse function of the hydrostatic 

stress level in the surface of the fcc lattice [Christiansen, Somers 2006]: 
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where   is the nitrogen activity and    the hydrostatic stress component in the surface.  

The coupled diffusion-displacement model to be formulated is a straightforward application of 

the coupled-temperature-displacement analysis in Abaqus, taking the heat capacity (  ) and 

density value (ρ) to unity and replacing the thermal conductivity (k) by the diffusion coefficient 

(D). The stress gradients, which were not readily available, and their effect on diffusion, were 

estimated using the shape functions of the second order elements following the method described 

in [Barrera et al. 2016].  

Single crystals with the <001> and <111> directions perpendicular to the surface, i.e. parallel to 

the direction of the nitrogen diffusion, were simulated by specifying the local material orientation 

with respect to the global orientation. One of the transverse directions [      was chosen such 
that the two orientations coincide in order to make a direct comparison of the results.  
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Figure 1: the <001> and <111> crystal orientations and their directions 

Elastic anisotropy was implemented as an orthotropic type with the elastic stiffness coefficients: 

             ,               and              . The coefficients are related to 

the elastic modulus by: 
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with the anisotropy parameter 
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The Young’s moduli for three crystallographic directions <hkl> are given in Table 1. Plastic 

anisotropy was assumed to scale with the Taylor factor, M, for the respective <hkl>. The 

critically resolved shear stress was obtained from hardness measurements on polycrystalline 

expanded austenite using the (averaged) Taylor factor       . 

Orientation Taylor factor (M) Yield stress [MPa]  

(   > [mol/  ]) 

E-modulus 

[GPa] 

<001> 2.45 3034 (19300) 100 

<011> 3.67 4552 (14550) 202 

<111> 3.67 4552 (9680) 308 

polycrystal 3.02 3746 (14796) 180 

Table 1: The anisotropic elastic and plastic mechanical properties for the two investigated single crystal 

orientations <001> and <111>. The properties of the <011> single crystal orientation and polycrystal are 

shown for comparison. 

Hardness tests on polycrystalline steel with a range of nitrogen contents revealed a strongly 

concentration dependent yield strength up to a certain nitrogen content [Bottoli et al. 2016, 

Jespersen et al. 2016] . The slope in the strengthening part of the stress-strain relation (cf. Fig. 1) 

commensurate with the elastic stiffness of the austenitic stainless steel. Solid solution 

strengthening by nitrogen atoms proceeds until a yield strength plateau is reached, beyond which 

no further increase is observed (corresponding to a hardness plateau in expanded austenite 

zones). Both the elastic stiffness and the effective yield strength depend on the orientation of a 

grain (and thus its slip planes) with respect to the loading direction. The data from Table 1 thus 

give the yield strength as a function of concentration and orientation as shown in Figure 2. 
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Figure 2: Concentration and orientation dependent yield strength without work hardening effect 

3 Results 

The nitriding parameters used in the simulations were identical to those used for nitriding single 

crystal 316 stainless steel samples in [Somers, Christiansen 2015]; the treatment time was set to 

t = 14 h at temperature T = 440 °C and a nitriding potential (or, equivalently, a nitrogen 

activity)     . 

 

 

 

 

 

 

 

 

 

Figure 3: The (elastic) stress profiles along the diffusion direction     and within the plane of the crystal 

          for the two orientations <001> and <111> 

The elastic and plastic anisotropy are observed as the slope of the elastic region and the stress-

level at the surface region, respectively. The stress level with the addition of that of work 

hardening is               GPa for <001> and               GPa for <111>, 
following the yield flow values in Figure 2. The surface normal stresses are zero as expected. 

The stress distributions give hydrostatic stress levels of       and    GPa, respectively. 



ECHT – European Conference on Heat Treatment, 12/13 April 2018 106 
 

 

Figure 4: (a) the elastic and (b) plastic strain profiles for the two orientations <001> and <111> 

The elastic strains vary according to the crystal orientation and a smallest elastic strain is 

observed for the stiffer <111> direction. The ratio between the in-plane strain components and 

the strain normal to surface are different for the two orientations. For <111> the in-plane strain is 

largest, while for <001> the elastic strain is largest along the surface normal.  

The plastic strains are nearly identical, with exception of the depth region where mainly elastic 

accommodation occurs. This appears in contrast with the expectation that the stiffer <111> 

direction has the largest plastic deformation. The higher nitrogen concentration in <001> (Figure 

5) explains why the plastic strains in <001> and <111> do overlap (Figure 4). A maximum 

plastic deformation of 16 % is observed, which is consistent with earlier estimates.  

 

Figure 5: (a) the concentration profiles for the two orientations <001> and <111> and (b) the experimental 

concentration profiles determined with GD-OES for single crystals with the same orientations. The arrows 

indicate the concentration at which the orientation reaches maximum yield strength. 

Stress-induced diffusion caused by the hydrostatic stress gradient in combination with the higher 

solubility in the <001> grain has the net effect that it experiences a case deeper by about 14 % as 

compared to the <111> grain. The nitrogen concentration (and corresponding depth) where the 

yield stress is reached, is marked by the arrows in Figure 5a. The experimental profiles are 

shown in Figure 5b, which shows difference in treatment depth of 50 % as well as different 

slopes in the plastic region. 

4 Discussion 

Recognizing that the <111> and <001> orientations are not sensitive for lattice rotation, the 

orientation dependent yield stress was assumed to follow a Taylor crystal plasticity theory.  
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The experimental case depth was measured to differ by 50 % between the two orientations. The 

numerical simulations show only 14 % difference, which is largely due to different surface 

concentrations. The difference in the surface stresses between <111> and <001> crystals leads to 

different nitrogen solubilities (cf. Eq. 2). [Wu et al. 2014] found a difference in case depth of 

70 % between <001> and <111> orientations, which was ascribed to an experimentally 

determined difference in the surface concentration of grains. This correlates qualitatively with 

our modelling attempts. In our modelling attempts the difference between <001> and <111> may 

be underestimated, because the introduction of plastic deformation in austenitic stainless steel 

(and presumably also in expanded austenite) has a strong influence on the elastic behaviour of 

particularly the <001> oriented grains. This follows from the graph in Figure 6 showing the 

lattice strain as determined with neutron diffraction of various grain orientations in a 

polycrystalline material on the applied tensile stress (data from [Clausen, Lorentzen, Leffers 

1998]; graph from [Brink, et al. 2017]).  

 

Figure 6: Experimental lattice strains for selected hkl as measured with neutron diffraction in the direction 

parallel to the uniaxial tensile stress applied onto austenitic stainless steel. For comparison the predicted 

lattice strain for 200 is included and represented by the dash-dot line (all experimental data and 

simulations from [Clausen, Lorentzen, Leffers 1998]). The thin dashed straight lines extrapolate the 

elastic regime for 200, 220 and 311 reflections to emphasize the non-linearities introduced by plastic 

deformation. 

The net diffusion as a consequence of the stress gradient effect can be seen as the area under the 

solid solution strengthening part of the yield curves, which would give an approximately 33 % 

difference in the stress gradient enhanced diffusion effect. In this light, the gradient effect was 

expected to result in a greater difference in treatment depth between the two orientations. 

Similarly, the limiting effect of the hydrostatic stress level on the diffusion coefficient in the fcc 

lattice is not considered. The difference in magnitude of the calculated hydrostatic stresses is 

50 % higher in the <111> orientation, which may explain the experimentally observed smaller 

case depth.  

For identical concentration profiles, a greater plastic deformation would be expected for the 

stiffer <111> orientation, since it reaches the yield strength at a lower nitrogen content by a 

factor 2. Conversely, a greater elastic deformation is observed for the <001> direction.  

5 Conclusion 

A 3D Finite Element anisotropic model was introduced to investigate the influence of grain 

orientation on the mechanical properties and consequently the nitrogen distribution during low 

temperature nitriding of stainless steel. Qualitatively, the simulated concentration profiles were 

in agreement with experimental observations. However, the expected highly orientation 
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dependent concentration profiles were not reproduced. The proposed explanations for the 

discrepancy were the strong influence of plastic deformation on the elastic constants, especially 

in the case of the <001> orientation and the absence of the pressure effect on the diffusion 

coefficient.  

The initial attempt at numerically modelling the mechanically anisotropic effect and thereby the 

orientation dependent concentration profiles gives a good insight in the challenges and 

complexities of the underlying mechanisms.  
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