617 research outputs found

    ESC NN-Potentials in Momentum Space. I. PS-PS Exchange Potentials

    Get PDF
    A momentum space representation is derived for the Nijmegen Extended-Soft-Core (ESC) interactions. The partial wave projection of this representation is carried through, in principle for Two-Meson-Exchange (TME) in general. Explicit results for the momentum space partial wave NN-potentials from PS-PS-Exchange are given.Comment: 23 pages, 2 PostScript figures, revtex

    ESC NN-Potentials in Momentum Space. II. Meson-Pair Exchange Potentials

    Full text link
    The partial wave projection of the Nijmegen soft-core potential model for Meson-Pair-Exchange (MPE) for NN-scattering in momentum space is presented. Here, nucleon-nucleon momentum space MPE-potentials are NN-interactions where either one or both nucleons contains a meson-pair vertex. Dynamically, the meson-pair vertices can be viewed as describing in an effective way (part of) the effects of heavy-meson exchange and meson-nucleon resonances. From the point of view of ``duality,'' these two kinds of contribution are roughly equivalent. Part of the MPE-vertices can be found in the chiral-invariant phenomenological Lagrangians that have a basis in spontaneous broken chiral symmetry. It is shown that the MPE-interactions are a very important component of the nuclear force, which indeed enables a very succesful description of the low and medium energy NN-data. Here we present a precise fit to the NN-data with the extended-soft-core (ESC) model containing OBE-, PS-PS-, and MPE-potentials. An excellent description of the NN-data for TLab350T_{Lab} \leq 350 MeV is presented and discussed. Phase shifts are given and a χp.d.p.2=1.15\chi^2_{p.d.p.} = 1.15 is reached.Comment: 27 pages, 5 PostScript figures, revtex

    Neutron-star radii based on realistic nuclear interactions

    Get PDF
    The existence of neutron stars with 2M2M_\odot requires the strong stiffness of the equation of state (EoS) of neutron-star matter. We introduce a multi-pomeron exchange potential (MPP) working universally among 3- and 4-baryons to stiffen the EoS. Its strength is restricted by analyzing the nucleus-nucleus scattering with the G-matrix folding model. The EoSs are derived using the Brueckner-Hartree-Fock (BHF) and the cluster variational method (CVM) with the nuclear interactions ESC and AV18. The mass-radius relations are derived by solving the Tolmann-Oppenheimer-Volkoff (TOV) equation, where the maximum masses over 2M2M_\odot are obtained on the basis of the terrestrial data. Neutron-star radii RR at a typical mass 1.5M1.5M_\odot are predicted to be 12.3 ⁣ ⁣13.012.3\!\sim\!13.0 km. The uncertainty of calculated radii is mainly from the ratio of 3- and 4-pomeron coupling constants, which cannot be fixed by any terrestrial experiment. Though values of R(1.5M)R(1.5M_\odot) are not influenced by hyperon-mixing effects, finely-observed values for them indicate degrees of EoS softening by hyperon mixing in the region of M ⁣ ⁣2MM\!\sim\!2M_\odot. If R(1.5M)R(1.5M_\odot) is less than about 12.4 km, the softening of EoS by hyperon mixing has to be weak. Useful information can be expected by the space mission NICER offering precise measurements for neutron-star radii within ±5%\pm 5\%.Comment: 8 pages, 7 figure

    Strangeness -2 two-baryon systems

    Full text link
    We derive strangeness -2 baryon-baryon interactions from a chiral constituent quark model including the full set of scalar mesons. The model has been tuned in the strangeness 0 and -1 two-baryon systems, providing parameter free predictions for the strangeness -2 case. We calculate elastic and inelastic NΞN\Xi and ΛΛ\Lambda\Lambda cross sections which are consistent with the existing experimental data. We also calculate the two-body scattering lengths for the different spin-isospin channels.Comment: 12 pages, 4 figures. Accepted for publication in Phys. Lett.

    Soft-core meson-baryon interactions. II. πN\pi N and K+NK^+ N scattering

    Get PDF
    The πN\pi N potential includes the t-channel exchanges of the scalar-mesons σ\sigma and f_0, vector-meson ρ\rho, tensor-mesons f_2 and f_2' and the Pomeron as well as the s- and u-channel exchanges of the nucleon N and the resonances Δ\Delta, Roper and S_{11}. These resonances are not generated dynamically. We consider them as, at least partially, genuine three-quark states and we treat them in the same way as the nucleon. The latter two resonances were needed to find the proper behavior of the phase shifts at higher energies in the corresponding partial waves. The soft-core πN\pi N-model gives an excellent fit to the empirical πN\pi N S- and P-wave phase shifts up to T_{lab}=600 MeV. Also the scattering lengths have been reproduced well and the soft-pion theorems for low-energy πN\pi N scattering are satisfied. The soft-core model for the K+NK^+ N interaction is an SU_f(3)-extension of the soft-core πN\pi N-model. The K+NK^+ N potential includes the t-channel exchanges of the scalar-mesons a_0, σ\sigma and f_0, vector-mesons ρ\rho, ω\omega and ϕ\phi, tensor-mesons a_2, f_2 and f_2' and the Pomeron as well as u-channel exchanges of the hyperons Λ\Lambda and Σ\Sigma. The fit to the empirical K+NK^+ N S-, P- and D-wave phase shifts up to T_{lab}=600 MeV is reasonable and certainly reflects the present state of the art. Since the various K+NK^+ N phase shift analyses are not very consistent, also scattering observables are compared with the soft-core K+NK^+ N-model. A good agreement for the total and differential cross sections as well as the polarizations is found.Comment: 24 pages, 20 PostScript figures, revtex4, submitted to Phys. Rev.

    Soft two-meson-exchange nucleon-nucleon potentials. I. Planar and crossed-box diagrams

    Get PDF
    Pion-meson-exchange nucleon-nucleon potentials are derived for two nucleons in the intermediate states. The mesons we include are (i) pseudoscalar mesons: π,η,η\pi, \eta, \eta'; (ii) vector mesons: ρ,ω,ϕ\rho, \omega, \phi; (iii) scalar mesons: a0(980),ε(760),f0(975)a_{0}(980), \varepsilon(760), f_{0}(975); and (iv) the J=0J=0 contribution from the Pomeron. Strong dynamical pair suppression is assumed, and at the nucleon-nucleon-meson vertices Gaussian form factors are incorporated into the relativistic two-body framework using a dispersion representation for the pion- and meson-exchange amplitudes. The Fourier transformations are performed using factorization techniques for the energy denominators. The potentials are first calculated in the adiabatic approximation to all planar and crossed three-dimensional momentum-space π\pi-meson diagrams. Next, we calculate the 1/M1/M corrections.Comment: 28 pages RevTeX, 8 postscript figures; revised version as to appear in Phys. Rev.

    Soft-core meson-baryon interactions. I. One-hadron-exchange potentials

    Get PDF
    The Nijmegen soft-core model for the pseudoscalar-meson baryon interaction is derived, analogous to the Nijmegen NN and YN models. The interaction Hamiltonians are defined and the resulting amplitudes for one-meson-exchange and one-baryon-exchange in momentum space are given for the general mass case. The partial wave projection is carried through and explicit expressions for the momentum space partial wave meson-baryon potentials are presented.Comment: 25 pages, 2 PostScript figures, revtex4, submitted to Phys. Rev.

    Soft two-meson-exchange nucleon-nucleon potentials. II. One-pair and two-pair diagrams

    Full text link
    Two-meson-exchange nucleon-nucleon potentials are derived where either one or both nucleons contains a pair vertex. Physically, the meson-pair vertices are meant to describe in an effective way (part of) the effects of heavy-meson exchange and meson-nucleon resonances. {}From the point of view of ``duality,'' these two kinds of contribution are roughly equivalent. The various possibilities for meson pairs coupling to the nucleon are inspired by the chiral-invariant phenomenological Lagrangians that have appeared in the literature. The coupling constants are fixed using the linear σ\sigma model. We show that the inclusion of these two-meson exchanges gives a significant improvement over a potential model including only the standard one-boson exchanges.Comment: 21 pages RevTeX, 7 postscript figures; revised version as to appear in Phys. Rev.

    Soft-core hyperon-nucleon potentials

    Get PDF
    A new Nijmegen soft-core OBE potential model is presented for the low-energy YN interactions. Besides the results for the fit to the scattering data, which largely defines the model, we also present some applications to hypernuclear systems using the G-matrix method. An important innovation with respect to the original soft-core potential is the assignment of the cut-off masses for the baryon-baryon-meson (BBM) vertices in accordance with broken SU(3)F_F, which serves to connect the NN and the YN channels. As a novel feature, we allow for medium strong breaking of the coupling constants, using the 3P0^3P_0 model with a Gell-Mann--Okubo hypercharge breaking for the BBM coupling. We present six hyperon-nucleon potentials which describe the available YN cross section data equally well, but which exhibit some differences on a more detailed level. The differences are constructed such that the models encompass a range of scattering lengths in the ΣN\Sigma N and ΛN\Lambda N channels. For the scalar-meson mixing angle we obtained values θS=37\theta_S=37 to 40 degrees, which points to almost ideal mixing angles for the scalar qqˉq\bar{q} states. The G-matrix results indicate that the remarkably different spin-spin terms of the six potentials appear specifically in the energy spectra of Λ\Lambda hypernuclei.Comment: 37 pages, 4 figure
    corecore