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The existence of neutron stars with 2M⊙ requires the strong stiffness of the equation of state
(EoS) of neutron-star matter. We introduce a multi-pomeron exchange potential (MPP) work-
ing universally among 3- and 4-baryons to stiffen the EoS. Its strength is restricted by analyzing
the nucleus-nucleus scattering with the G-matrix folding model. The EoSs are derived using the
Brueckner-Hartree-Fock (BHF) and the cluster variational method (CVM) with the nuclear interac-
tions ESC and AV18. The mass-radius relations are derived by solving the Tolmann-Oppenheimer-
Volkoff (TOV) equation, where the maximum masses over 2M⊙ are obtained on the basis of the
terrestrial data. Neutron-star radii R at a typical mass 1.5M⊙ are predicted to be 12.3∼13.0 km.
The uncertainty of calculated radii is mainly from the ratio of 3- and 4-pomeron coupling constants,
which cannot be fixed by any terrestrial experiment. Though values of R(1.5M⊙) are not influenced
by hyperon-mixing effects, finely-observed values for them indicate degrees of EoS softening by hy-
peron mixing in the region of M ∼2M⊙. If R(1.5M⊙) is less than about 12.4 km, the softening of
EoS by hyperon mixing has to be weak. Useful information can be expected by the space mission
NICER offering precise measurements for neutron-star radii within ±5%.

PACS numbers: 21.30.Cb, 21.45.Ff, 21.65.Cd, 21.80.+a, 25.70.-z, 26.60.Kp

I. INTRODUCTION

In studies of neutron stars, the fundamental role is
played by the equation of state (EoS) for dense nu-
clear matter. The observed masses of neutron stars
J1614−2230 [1] and J0348+0432 [2] are given as (1.97±
0.04)M⊙ and (2.01± 0.04)M⊙, respectively, being severe
conditions for the stiffness of EoS of neutron-star mat-
ter. It is well known that the stiff EoS giving the max-
imum mass of 2M⊙ can be derived from the existence
of strongly repulsive effects in the high-density region.
In the non-relativistic approaches, three-body repulsions
(TBR) interactions among nucleons are taken into ac-
count. In [3], for instance, neutron matter EoSs and
mass(M)−radius(R) relations of neutron stars were stud-
ied using quantum Monte Carlo technique with the AV8’
interaction added by 3n repulsions. In relativistic mean
field (RMF) models, self-interactions of repulsive vector
mesons are taken into account to stiffen EoSs.

On the other hand, hyperon (Y ) mixing in neutron-
star matter brings about remarkable softening of the EoS,
canceling the TBR effect for the maximum mass [4–6]:
With increasing of baryon density toward centers of neu-
tron stars, chemical potentials of neutrons become high
so that neutrons at Fermi surfaces are changed to hyper-
ons (Y ) via strangeness non-conserving weak interactions
overcoming rest masses of hyperons. This hyperon mix-

∗Electronic address: ys˙yamamoto@riken.jp

ing to neutron-star matter exists by all means. One of
the ideas to avoid this “Hyperon puzzle in neutron stars”
is to assume that the many-body repulsions work univer-
sally for every kind of baryons. In Refs. [7–9], the multi-
pomeron exchange potential (MPP) was introduced as
a model of universal repulsions among three and four
baryons on the basis of the Extended Soft Core (ESC)
BB interaction model developed by two of authors (T.R.
and Y.Y.) and M.M. Nagels [10, 11]. MPP and the ad-
ditional three-body attraction (TBA) were restricted on
the basis of terrestrial experiments, where another ad-
justable parameter was not used for the stiffness of EoS.

Comparing to the measurement of neutron-star
masses, the observational determination of their radii has
been difficult. Though the radius can be extracted from
the analysis of X-ray spectra emitted by the neutron star
atmosphere, very different values for stellar radii have
been derived because of uncertainties of the modeling of
the X-ray emission. Now, by the space mission NICER
(Neutron star Interior Composition ExploreR) [13], high-
precision X-ray astronomy is expected to offer precise
measurements for neutron-star radii within ±5%.

In this work, we start from the EoS of neutron-
star matter with baryonic constituents, not consider-
ing a possible transition to deconfined quark matter,
and derive basic MR relations by solving the Tolmann-
Oppenheimer-Volkoff (TOV) equation. Our EoS is de-
rived from the realistic baryon-baryon (BB) interaction
model added by MPP and TBA, This interaction model
is confirmed by rich terrestrial data, and then MR rela-
tions can be predicted within a small range. As shown
later, the important point in this work is that basic fea-
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tures of MR relations are determined substantially by
MPP parts with minor contributions from TBA parts.

The modern NN interaction models, one of which is
our ESC, are constructed with high accuracy in repro-
ducing NN scattering data. It is well known, however,
that these potentials lead to different saturation curves
(E/A values as a function of density), and these curves
are controlled mainly by tensor components included in
interaction models. It is interesting to study how the dif-
ference of interaction models has an effect on the MR re-
lations. In this work, we pick up the AV18 potential [12]
as an example giving the far shallower saturation curve
than ESC.

In our approach, no ad hoc parameter is included to
control the stiffness of neutron-star EoS. This means that
we can predict radii of neutron stars as a function of
their masses, which should be confirmed by the coming
observational data. We adopt the Burueckner-Hartree-
Fock (BHF) theory in order to treat baryonic many-body
systems with realistic BB interaction models, and study
properties of baryonic matter including not only nucleons
but also hyperons with use of the lowest-order G-matrix
theory with the continuous choice for intermediate single
particle potentials. Methods of G-matrix calculations in
this work are the same as those in [7–9], but numerical
results of G-matrices are different from those in these
previous works because the computation program is im-
proved.

The EOSs and MR relations by BHF are compared
with those calculated with the cluster variational method
(CVM) [14–16] to discuss the theoretical uncertainties in
predicted values of neutron-star radii with respect to the
many-body approaches.

This paper is organized as follows: In Sect.II, on the
basis of realistic interaction models, the EoSs and the
MR relations of neutron stars are derived: In IIA, the
MPP and TBA parts are restricted so as to reproduce
the angular distributions of 16O+16O scattering and nu-
clear saturation properties. In IIB, the EoSs of β-stable
neutron-star matter are derived with use of BHF. The
MR relations are obtained by solving the TOV equation.
In IIC, the EoSs and MR relations are investigated with
use of CVM. In Sec.III, the EoSs of hyperonic nuclear
matter are derived and effects of hyperon mixing on the
MR relations are investigated. In Sec.IV, our predictions
for values of R(1.5M⊙) are summarized.

II. BARYON-BARYON INTERACTION AND

NEUTRON-STAR EOS

A. Many-body repulsion

We start from the ESC BB interaction. The latest
version of ESC is named as ESC08c [11]. Hereafter,
ESC means this version. In this modeling, important
parts of BB repulsive cores are described by pomeron
exchanges. They can be extended straightforwardly to

N -body repulsions by multi-pomeron exchanges, called
here the multipomeron-exchange potential(MPP) [7, 8].
The N -body local potential W (N) by pomeron exchange
is

W (N)(x1, ...,xN ) = g
(N)
P gNP

{
∫

d3ki
(2π)3

e−iki·xi

}

×(2π)3δ(

N
∑

i=1

ki)Π
N
i=1

[

exp
(

−k
2
i

)]

· M4−3N , (1)

where gP and g
(N)
P are two-body and N -body pomeron

strengths, respectively, and the (low-energy) pomeron
propagator is the same as the one used in the two-body
pomeron potential. The defined MPP works universally
among baryons because the pomeron is an SU(3)-singlet
in flavor (and color) space. The effective two-body po-
tential in a baryonic medium is obtained by integrating
over the coordinates x3, ...,xN as follows:

V
(N)
eff (x1,x2)

= ρN−2

∫

d3x3...

∫

d3xN W (N)(x1,x2, ...,xN )

= g
(N)
P gNP

ρN−2

M3N−4

(

mP√
2π

)3

exp

(

−1

2
m2

P r
2
12

)

. (2)

Now, we assume that the dominant mechanism is triple
and quartic pomeron exchange. The values of the two-
pomeron strength gP and the pomeron mass mP are the
same as those in ESC. The scale mass M is taken as the
proton mass.

Because MPP is purely repulsive, it is considered gen-
erally to add a three-body attraction (TBA) to ESC to-
gether with MPP in order to reproduce the nuclear sat-
uration property. We introduce here a phenomenological
potential represented as a density-dependent two-body
interaction

VA(r; ρ) = V0 exp(−(r/2.0)2) ρ exp(−ηρ) (1 + Pr)/2 .(3)

Pr is a space-exchange operator so that VA(r; ρ) works
only in even states due to (1 +Pr). V0 and η are treated
as adjustable parameters.

It is evident here that MPP is defined as a straight
forward extension of the ESC modeling. However, be-
cause its strength is restricted on the basis of experi-
mental data, it is meaningful that as a phenomenological
model the same form of MPP is added to AV18 together
with the VA.

As shown in ref.[17], the repulsive effects by MPP
in nucleon sectors appear in angular distributions of
16O+16O elastic scattering at an incident energy per nu-
cleon Ein/A = 70 MeV, etc. Such a scattering phe-
nomenon can be analyzed quite successfully with the
complex G-matrix folding potentials derived from free-
space NN interactions: G-matrix calculations are per-
formed in nuclear matter, and G-matrix interactions are
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represented in coordinate space to construct nucleus-
nucleus folding potentials [17]. In the same way as [7–
9], the analyses for the 16O+16O elastic scattering at
Ein/A = 70 MeV are performed. The MPP strengths

(g
(3)
P and g

(4)
P ), together with VA, are adjusted to re-

produce the scattering data using the G-matrix folding
potential together with the condition that the satura-
tion parameters of nuclear matter are reproduced well.
Backward angular distributions of 16O+16O scattering
are substantially restricted by the MPP repulsive contri-
butions in the density region of ρ0 < ρ < 2ρ0 [18]. They
are not so dependent on a ratio of contributions of triple
and quartic pomeron exchanges, and we can find vari-

ous combinations of g
(3)
P and g

(4)
P reproducing the data

equally well. As found in Eq.(2), the contributions from
triple and quartic components are proportional to ρ and
ρ2, respectively. Therefore, the latter contribution plays
a remarkable role to stiffen the EoS in high density re-
gion.

TABLE I: Parameters g
(3)
P and g

(4)
P included in MPP

g
(3)
P g

(4)
P

MPa 2.62 40.0

MPb 3.37 0.0

MPa+ 1.84 80.0

The chosen parameter sets are listed in Table I, where
the parameter values for these sets are different from
those in [8, 9] because of the improvement of G-matrix
calculations. For TBA parts in the case of using ESC,
we take V0 = −8.0 MeV and η = 4.0 fm−1 in three

sets (MPa, MPb, MPa+) of g
(3)
P and g

(4)
P . Although an-

other choice of η leads mainly to a change in the satura-
tion densities, its impacts on MR curves of neutron stars
are small. For simplicity, the value of η = 4.0 fm−1 is
fixed in this paper. In the case of using AV18, we take
V0 = −35.0 MeV (η = 4.0 fm−1) for the TBA part with
the same strengths of MPP, where the deeper value of
V0 in the AV18 case is needed to reproduce the satura-
tion properties. MPa and MPb are denoted as MPa’ and
MPb’, respectively, when V0 = −8.0 MeV in the formers
are changed to V0 = −35.0 MeV. Thus, ESC (AV18)
combined with MPa (MPa’) is denoted as ESC+MPa
(AV18+MPa’), and so on.

Let us show differential cross sections for 16O+16O
elastic scattering at Ein/A = 70 MeV calculated with
the G-matrix folding potentials in comparison with the
experimental data [19]. In comparing the G-matrix fold-
ing potentials derived from ESC and AV18, it should be
noted that not only their real parts but also their imagi-
nary parts are different from each other. As shown by the
E/A curves in Fig. 2, the real part for AV18 is shallower
than that for ESC. Furthermore, the imaginary poten-
tial for AV18 is considerably weaker than for ESC. Both
features can be understood by the fact that the weight

0 10 20

10
-4

10
-2

10
0

16
O + 

16
O elastic scattering

E/A = 70 MeV

θc.m. (degree)

d
σ

/d
σ

R
u

th
.

AV18
AV18+MPa
AV18+MPa'

ESC
ESC+MPa

FIG. 1: (Color online) Differential cross sections for 16O+16O
elastic scattering at Ein/A = 70 MeV calculated with G-
matrix folding potentials. Solid, dashed and dot-dashed
curves are for ESC+MPa, AV18+MPa and AV18+MPa’, re-
spectively. Dotted curves are for ESC and AV18.

of the tensor component in AV18 is larger than in the
case of ESC: Tensor-force contributions are suppressed
more efficiently in medium than central-force ones, which
leads to less attractive G-matrices. In the cases of us-
ing ESC, the derived imaginary potentials are so suit-
able to reproduce the 16O+16O scattering data with no
adjustment. On the other hand, the factor NW = 1.5
is multiplied on the imaginary potentials derived from
AV18. In Fig. 1, thin solid and dotted curves are ob-
tained with ESC and AV18, respectively, which devi-
ate substantially from the data. The solid curve is for
ESC+MPa, fitting the data nicely. The dashed curve
is for AV18+MPa with V0 = −8.0 MeV, which demon-
strates that the 16O+16O folding potential is too repul-
sive to reproduce the data. The dot-dashed curve is for
AV18+MPa’, in which we take V0 = −35.0 MeV without
changing the MPP strength. Thus, in the AV18 case, it
is necessary to make VA more attractive than that in the
ESC case in order to reproduce the data well.

Similar curves can be obtained in the case of using
ESC+MPb, AV18+MPb and AB18+MPb’, where MPb
and MPb’ include the TBA parts of V0 = −8.0,−35.0
MeV, respectively.

In Fig. 2, we show the energy curves of symmet-
ric nuclear matter, namely binding energy per nucleon
E/A as a function of density. Solid curves in the left
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(right) panel are obtained by ESC+MPa and ESC+MPb
(AV18+MPa’ and AV18+MPb’), and the dot-dashed one
is by ESC (AV18). The box in the figure shows the area
where nuclear saturation is expected to occur empirically.
The minimum value ofE/A for AV18 is found to be−16.5
MeV at ρ = 0.229 fm−3, being considerably shallower
than that for ESC −22.5 MeV at ρ = 0.255 fm−3. This
difference of E/A values for ESC and AV18 is related to
the necessity of taking different values for V0 (−8.0 and
−35.0 MeV for ESC and AV18, respectively).
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-20
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20
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-20
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e
V

]

 [fm-3]

ESC

ESC+MPb

ESC+MPa
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AV18

AV18+MPb'
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FIG. 2: (Color online) Energy per particle E/A as a function
of nucleon density ρ symmetric matter. Solid curves in the
left (right) panel are obtained by ESC+MPa and ESC+MPb
(AV18+MPa’ and AV18+MPb’), and the dot-dashed one is
by ESC (AV18). The box shows the empirical value.

TABLE II: Calculated values of saturation parameters.

ρ0 E/A Esym L K

(fm−3) (MeV) (MeV) (MeV) (MeV)

ESC+MPa 0.151 −16.3 31.7 55.7 248

ESC+MPb 0.155 −16.1 31.4 49.2 217

ESC+MPa+ 0.148 −16.5 31.4 55.1 275

AV18+MPa’ 0.159 −15.3 29.4 50.5 263

AV18+MPb’ 0.165 −15.2 29.9 52.0 234

The EoS is specified by the following quantities: The
difference between the E/A curves for neutron mat-
ter and symmetric matter gives the symmetry energy
Esym(ρ), and its slope parameter is defined by L =

3ρ0

[

∂Esym(ρ)
∂ρ

]

ρ0

. The incompressibility is defined by

K = 9ρ20

[

∂2

∂ρ2E/A(ρ)
]

ρ0

. Calculated values of these

quantities at saturation density ρ0 are summarized in
Table II. The minimum values of E/A curves in all cases
turn out to be close to the empirical value. The sym-
metric energies and their slope parameters are similar to
each other and consistent with the empirical indications.

The difference among these sets appears in the values of
the incompressibility K. The experimental values of K
are given as 220 ∼ 250 MeV [20]. The value of K = 275
MeV at ρ0 = 0.148 fm−3 in the MPa+ case seems to be
too large in comparison with the experimental indication.
In the following part of this paper, MPa+ is used only
to demonstrate the relation between the MPP repulsion
and the stiffness of EoS.

B. EoS and MR relation

Using our interaction models, we derive the EoS of
β-stable neutron-star matter composed of neutrons (n),
protons (p), electrons (e−), muons (µ−), The EoSs ob-
tained from G-matrix calculations are used for ρ > 0.24
fm−3. Below 0.12 fm−3 we use the EoS of the crust ob-
tained in [21, 22]. Then, the EoSs for ρ > 0.24 fm−3

and ρ < 0.12 fm−3 are connected smoothly. The E/A
curves obtained from G-matrix calculations are fitted by
analytical functions, giving rise to analytical expressions
for energy density, chemical potential and pressure.

Assuming a mixed matter of n, p, e− and µ− in
chemical equilibrium, we solve the TOV equation for
the hydrostatic structure to obtain mass-radius relations
of neutron stars. In Fig.3, let us demonstrate the ob-
tained MR relations of neutron stars. Solid curves are
for ESC+MPa/MPb/MPa+,and the dot-dashed one for
ESC. The EoSs including MPP repulsions are found to
be stiff enough to give 2M⊙ maximum masses. It should
be noted that the 2M⊙ masses are obtained with no ad
hoc parameter to stiffen EoSs in our approach, because
our MPP repulsions are restricted so as to reproduce the
16O+16O scattering data. It can be checked, here, that
contributions of TBA to the MR curves are small in the
case of using ESC, demonstrating that basic features of
MR relations are mainly determined by MPP contribu-
tions. The difference between MPa (MPa+) and MPb is
due to the quartic-pomeron exchange term included in
the formers. The strength of the effective two-body in-
teraction derived from the quartic-pomeron exchange is
proportional to ρ2, and the contribution becomes size-
able in the high-density region, making the maximum
mass so large. Here, the important point in Fig.3 is as
follows: The repulsive effect by MPP is shown symboli-
cally as MPa+ > MPa > MPb, and the increase of the
repulsive effect raises both M and R of a neutron star. In
our present approach, only the strength of this repulsive
effect plays a role to adjust the stiffness of the EoS. This
effect changes both mass and radius of a neutron star si-
multaneously: There is no parameter changing mass and
radius independently. Now, let us remark the obtained
values of R(1.5M⊙), being 12.3 km, 12.9 km and 13.1 km
for MPb, MPa and MPa+, respectively.

In Fig.4, the MR curves for AV18 are compared
with those for ESC. Solid curves are for ESC+MPa and
ESC+MPb, being the same as the corresponding curves
in Fig.3. The dashed curves are for AV18+MPa’ and
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FIG. 3: (Color online) Neutron-star masses as a function of
the radius R. Solid, dashed and dotted curves are for MPa,
MPa+ and MPb, respectively. Dot-dashed curve is for ESC.
Upper two dotted horizontal lines show the observed masses
1.97M⊙ and 2.01M⊙ of J1614-2230 and J0348+0432, respec-
tively. Lower dotted line shows mass 1.5M⊙ of a typical neu-
tron star.

AV18+MPb’, n which V0 = −8.0 MeV in MPa/MPb
is changed to the more attractive value of V0 = −35.0
MeV so as to reproduce the 16O+16O scattering data.
The value of R(1.5M⊙) for AV18+MPa’ (AV18+MPb’)
is found to be smaller by 0.2 km (0.1 km) than that for
ESC+MPa (ESC+MPb).

10 11 12 13 14 15
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FIG. 4: (Color online) Neutron-star masses as a function of
the radius R. Solid curves are for ESC+MPa and ESC+MPb.
Dashed curves are for AV18+MPa’ and AV18+MPb’. Also
see the caption of Fig.3.

C. Calculations by the variational method

The variational method is another powerful method
for neutron-star EoS in the non-relativistic approach.

In Refs.[14–16], one of the present authors (H.T.) and
his collaborators developed a cluster variational method
(CVM) for uniform nuclear matter with arbitrary proton
fractions. It is important to compare the BHF results
in the previous sections with those by CVM using the
same interaction models. We adopt here AV18+MPa’
and AV18+MPb’. In Table III, we show the values of
saturation parameters calculated by CVM. In compar-
ison with the BHF results for the same interactions in
Table II, CVM turns out to give shallower values of E/A
by about 2 MeV than BHF.

TABLE III: Values of saturation parameters calculated by
CVM.

ρ0 E/A Esym L K

(fm−3) (MeV) (MeV) (MeV) (MeV)

AV18+MPa’ 0.155 −12.85 26.6 47 275

AV18+MPb’ 0.164 −12.92 27.5 48 252
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FIG. 5: (Color online) E/A curves of symmetric and pure
neutron matter. Solid and dashed curves are for AV18+MPa’
and AV18+MPb’, respectively. Thick (thin) curves are ob-
tained by CVM (BHF).

Fig.5 shows the E/A curves of symmetric and pure
neutron matter obtained by CVM. The solid and dashed
curves are for AV18+MPa’ and AV18+MPb’, respec-
tively. The corresponding E/A curves obtained by
BHF are drawn by thin solid and dashed curves for
AV18+MPa’ and AV18+MPb’, respectively. Here, the
CVM results are found to become more repulsive than
the BHF ones with increasing of density, especially in
symmetric matter. This means that strong repulsive in-
teractions are evaluated larger by CVM than BHF. It is
difficult to determine which is reasonable. In [23], the
BHF results for the EoS of nuclear matter were com-
pared with the results by other many-body methods us-
ing Argonne-type interactions. They found that the for-
mers were significantly different from the latters in sym-
metric matter. Such situations are similar to our present
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case. Thus, it is considered that there still remains an
important problem how to obtain the most realistic de-
scription of nuclear-matter EoS.
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FIG. 6: (Color online) MR curves of neutron stars for
AV18+MPa’ and AV18+MPb’. Solid and dashed curves are
obtained by CVM and BHF, respectively. Also see the cap-
tion of Fig.3.

In Fig.6, the solid curves show the MR relations ob-
tained by CVM for AV18+MPa’ and AV18+MPb’, where
the EoS in the crust region is treated in the same way
as the previous section, being different from the treat-
ment in [15]. For comparison, here, the BHF results
for AV18+MPa’ and AV18+MPb’ are shown by dashed
curves. Though the masses and radii obtained by CVM
are larger than those by BHF in the case of using the
same interaction, the difference of M(1.5M⊙) values is
less than 0.2 km.

The reason of differentMR curves is because the MPP
repulsions are evaluated larger by CVM than BHF. Con-
sidering that the MPP strength is determined in the BHF
treatment (G-matrix folding model), it is reasonable to
reduce the MPP strength in the CVM treatment so as
to reproduce E/A values properly. Then, it is expected
that the MR curve for CVM becomes close to that for
BHF.

TABLE IV: Calculated values of R(1.5M⊙).

model method R(1.5M⊙) [km]

ESC+MPa BHF 13.0

AV18+MPa’ BHF 12.8

CVM 13.0

ESC+MPa+ BHF 13.2

ESC+MPb BHF 12.4

AV18+MPb’ BHF 12.3

CVM 12.3

In Table IV, we summarize the calculated values

of R(1.5M⊙). Here, it is notable that the value of
R(1.5M⊙)=12.3 km for AV18+MPb’ is quite similar to
that for ESC+MPb, and this value for AV18+MPb’ is re-
produced by both of BHF and CVM. On the other hand,
in the corresponding three cases including MPa, the val-
ues of R(1.5M⊙) are slightly different from each other.
As the MPP strength becomes more repulsive, the value
of R(1.5M⊙) obtained by CVM becomes larger than that
by BHF.

Thus, considering the ambiguities of interactions and
methods, we can say as follows: For the MPb-type in-
teractions including 3-body repulsion only, we expect
R(1.5M⊙) = 12.3 ∼ 12.4 km. For the MPa-type inter-
actions including 3- and 4-body repulsions, we expect
R(1.5M⊙) = 12.8∼ 13.0 km. As shown in next section,
these results for R(1.5M⊙) are not changed by effects of
hyperon mixing.

III. HYPERON MIXING

Let us recapitulate our method to derive the EoS of
baryonic matter composed of nucleons (N = n, p) and
hyperons (Y = Λ,Σ−). A single particle potential of B

particle in B′ matter U
(B′)
B (k) is given by summing up

G-matrix elements 〈kk′|GBB′,BB′ |kk′〉

U
(B′)
B (k) =

∑

k′,,k
(B′)
F

〈kk′|GBB′,BB′ |kk′〉 (4)

with B,B′ = N, Y , where spin isospin quantum num-
bers are implicit. Then, a single particle potential of B

in baryonic matter is given by UB(k) =
∑

B′ U
(B′)
B (k).

Energy density is given by

ε = εmass + εkin + εpot

= 2
∑

B

∫ kB
F

0

d3k

(2π)3

{

MB +
~
2k2

2MB

+
1

2
UB(k)

}

(5)

A baryon number density is given as ρ =
∑

B ρB, ρB
being density of component B. Chemical potentials µB

and pressure P are expressed as

µB =
∂ε

∂ρB
, (6)

P = ρ2
∂(ε/ρ)

∂ρB
=

∑

B

µBρB − ε . (7)

In neutron-star matter composed of n, p, e−, µ−, Λ
and Σ−, equilibrium conditions are given as
(1) chemical equilibrium conditions,

µn = µp + µe (8)

µµ = µe (9)

µΛ = µn (10)

µΣ− = µn + µe (11)
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(2) charge neutrality,

ρp = ρe + ρµ + ρΣ− (12)

(3) baryon number conservation,

ρ = ρn + ρp + ρΛ + ρΣ− (13)

When the analytical expressions for energy densities are
substituted into the chemical potentials (6), the chem-
ical equilibrium conditions are represented as equations
for densities ρa (a = n, p, e−, µ−, Λ, Σ−). Then, equa-
tions can be solved iteratively, and an energy density and
a chemical potential are determined for each baryon com-
ponent.

ESC gives potentials in S = −1 and S = −2 channels,
being designed consistently with various data of YN scat-
tering and hypernuclei. Important is to determine MPP
and TBA parts in channels including hyperons: MPP’s
are defined universally in all baryon channels. For TBA’s
in YN channels, parameters V0 and η in each YN channel
are determined so as to reproduce the related hypernu-
clear data. Such a task was performed in [8, 9]: Here,
the parameter sets in YN channels are taken from these
references, in which the MPP strengths in YN channels
are rather weaker than the MPP ones in NN channels
determined in this work. Though this choice for MPPs is
considered to bring about some over-estimation of soft-
ening effect by hyperon mixing, the conclusion for radii
of neutron stars in this work is not affected.

For the EoS softening, the Σ− mixing is more im-
portant than Λ mixing, because the electron mass re-
duces the threshold energy in the equilibrium condition
µΣ− = µn +µe in spite of the Σ− mass larger than Λ. In
many RMF approaches, no Σ− mixing occurs due to the
condition of UΣ− = −(20−30) MeV. In our approach as-
suming the universal MPP repulsions among all baryons,
there appears always Σ− mixing together with Λ and
Ξ− mixing [9]. However, if extra repulsions among Σnn
are assumed, the Σ− mixing disappears. Namely, there
appears no Σ− mixing, if repulsive effects for Σ−’s are
substantially stronger than those for nucleons. Such a
case can be seen also in [15]. In the case of Ξ− mix-
ing, neglected in this work, the large mass of Ξ− makes
the softening effect smaller than the Σ− mixing, and the
effect of Ξ− mixing on the MR relation is small [9].

Using the EoS of hyperonic nuclear matter, we solve
the TOV equation to obtain mass-radius relations of neu-
tron stars in the same way as the previous cases with no
hyperon mixing. In Fig. 7, neutron-star masses are drawn
as a function of radius R. In these figures, solid curves
are for MPa and MPb with hyperon (Λ and Σ−) mixing,
and dashed curves are obtained without hyperon mixing.
The differences between solid and dashed curves demon-
strate the softening of EoS. It is found that the maximum
mass for MPa is still 2M⊙ in spite of remarkable soften-
ing of the EoS by hyperon mixing, but that for MPb is
substantially less than 2M⊙. The dot-dashed curve for
MPb is obtained by omitting the Σ− mixing, that is in-
cluding only Λ mixing. In this case, the maximum mass

turns out to become 2M⊙ owing to the lacking of the
large softening effect by Σ− mixing. Let us add here
that the hyperon-onset mass in the solid (dot-dashed)
curve is 1.65M⊙ (1.51M⊙).

Thus, we can consider the two scenarios for the exis-
tence of neutron stars with 2M⊙:
(1) MPa-type with Λ and Σ−, where a star mass far larger
than 2M⊙ is reduced to 2M⊙ by strong softening of EoS
as shown by the solid curve for MPa in Fig. 7.
(2) MPb-type with Λ mixing only (no Σ− mixing), where
a star mass is kept to be of 2M⊙ owing to weak softening
of EoS as shown by the dot-dashed curve in Fig. 7.

Now, it should be noted that values of R(1.5M⊙) are
13.0 km and 12.4 km in the cases of (1) and (2), respec-
tively, giving the difference of 0.6 km. As found in the
figure, these values are not so affected by hyperon mix-
ing, being originated from the MPP strengths in respec-
tive cases. In the MPa case, for instance, the softening
effect of EoS for radii R is found to appear in the re-
gion of M > 1.8M⊙. Thus, even considering hyperon
mixing, we have the same statements on the relation be-
tween MPP strengths and R(1.5M⊙) values in previous
sections. If radii R for M = (1.4∼ 1.8)M⊙ are observed
with a precision of ±5%, scenarios (1) and (2) might be
discriminated. Of course, if radii of neutron stars around
the maximum mass are also observed, it will give more
decisive information for hyperon mixing.

10 11 12 13 14 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
/
M
so

la
r

R [km]

MPaMPb

FIG. 7: (Color online) Neutron-star masses as a function of
the radius R. Solid (dashed) curves are with (without) hy-
peron (Λ and Σ−) mixing for ESC+MPa and ESC+MPb.
Dot-dashed curve for MPb is with Λ mixing only. Also see
the caption of Fig.3.

One of the highly prioritized targets observed by
NICER is the neutron star PSR 0437−4715 whose mass
is (1.76 ± 0.20)M⊙ [24]. Our calculated values for
R(1.76M⊙) are as follows: In ESC+MPa case, we obtain
12.8 km and 12.9 km with and without hyperon mix-
ing, respectively. In the ESC+MPb case, we obtain 12.1
km and 12.2 km with and without hyperon (Λ) mixing.
Effects of hyperon mixing are still small in the case of
M = 1.76M⊙. When the mass is close to the upper
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limit of the observed value 1.96M⊙, we have 11.4 km
(12.8 km) in ESC+MPa case and 11.5 km (11.9 km) in
ESC+MPb case with (without) hyperon mixing. On the
other hand, in the case of the lower limit of M = 1.56M⊙

we have 13.0 km (12.4 km) for ESC+MPa (ESC+MPb)
irrelevantly to hyperon mixing. Thus, our prediction for
PSR 0437−4715 is summarized as follows: The radius is
expected to be 11.4∼ 13.0 km. If the observed value is
12.8∼ 13.0 km, the strong softening of EoS by hyperon
mixing is indicated to be in neutron stars ofM > 1.8M⊙.

IV. CONCLUSION

The existence of neutron stars with 2M⊙ gives severe
conditions for the stiffness of EoS of neutron-star mat-
ter. Though the strong many-body repulsion can make
the EoS stiff enough, the hyperon mixing in neutron-
star matter brings about the remarkable softening of the
EoS. One way to solve this puzzle is to consider many-
body repulsions working universally among baryons. The
multi-pomeron potential (MPP) is such a model. The
strength of MPP in nucleon sectors can be determined
by fitting the observed angular distribution of 16O+16O
elastic scattering at Ein/A = 70 MeV with use of the G-
matrix folding potential. The neutron-star EoS includ-
ing MPP contributions is stiff enough to give the large
neutron-star mass 2M⊙, which can be obtained with no
ad hoc parameter for stiffness of EoS in our approach.

The strength of the MPP repulsion plays a role to

adjust the stiffness of the EoS, changing both mass and
radius of a neutron star simultaneously. Then, values of
radii R around a typical mass 1.5M⊙ are determined by
MPP strengths only with almost no effect by hyperon
mixing. On the basis of our analysis using BHF and
CVM, we predict R(1.5M⊙) = 12.3 ∼ 13.0 km where
the width of calculated values comes mainly from MPP
modeling composed of 3- and 4-body repulsions or 3-body
repulsion only. We obtain R(1.5M⊙) = 12.3∼ 12.4 km
for MPb-type model including 3-body repulsion only, and
R(1.5M⊙) = 12.8∼13.0 km for MPa-type model includ-
ing 3- and 4-body repulsions. Precise measurements by
NICER for neutron-star radii within ±5% are expected
to determine the stiffness of EoS originated from MPP
repulsions.

Information on hyperon mixing can be obtained indi-
rectly from precise measurements of radii. If R(1.5M⊙)
is larger than about 12.8 km, remarkable softening of EoS
by hyperon mixing has to bring about masses of 2M⊙. If
R(1.5M⊙) is smaller than about 12.4 km, the softening
of EoS by hyperon mixing has to be weak in order to
keep the maximum mass of 2M⊙.
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