693 research outputs found

    Three-dimensionality in quasi-two dimensional flows: recirculations and barrel effects

    Get PDF
    A scenario is put forward for the appearance of three-dimensionality both in quasi-2D rotating flows and quasi-2D magnetohydrodynamic (MHD) flows. We show that 3D recirculating flows and currents originate in wall boundary layers and that, unlike in ordinary hydrodynamic flows, they cannot be ignited by confinement alone. They also induce a second form of three-dimensionality with quadratic variations of velocities and current across the channel. This scenario explains both the common tendency of these flows to two-dimensionality and the mechanisms of the recirculations through a single formal analogy covering a wide class of flow including rotating and MHD flows. These trans-disciplinary effects are thus active in atmospheres, oceans or the cooling blankets of nuclear fusion reactors.Comment: 6 pages, 1 Figur

    Self-dual Ginzburg-Landau vortices in a disk

    Get PDF
    We study the properties of the Ginzburg-Laundau model in the self-dual point for a two-dimensional finite system . By a numerical calculation we analyze the solutions of the Euler-Lagrange equations for a cylindrically symmetric ansatz. We also study the self-dual equations for this case. We find that the minimal energy configurations are not given by the Bogomol'nyi equations but by solutions to the Euler Lagrange ones. With a simple approximation scheme we reproduce the result of the numerical calculation.Comment: 8 pages, 4 figures, RevTex macro

    Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network

    Full text link
    We investigate weak localization in metallic networks etched in a two dimensional electron gas between 2525\:mK and 750750\:mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T0.3T\gtrsim0.3\:K we find \Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and \Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.Comment: LaTeX, 5 pages, 4 eps figure

    Quantum oscillations in mesoscopic rings and anomalous diffusion

    Full text link
    We consider the weak localization correction to the conductance of a ring connected to a network. We analyze the harmonics content of the Al'tshuler-Aronov-Spivak (AAS) oscillations and we show that the presence of wires connected to the ring is responsible for a behaviour different from the one predicted by AAS. The physical origin of this behaviour is the anomalous diffusion of Brownian trajectories around the ring, due to the diffusion in the wires. We show that this problem is related to the anomalous diffusion along the skeleton of a comb. We study in detail the winding properties of Brownian curves around a ring connected to an arbitrary network. Our analysis is based on the spectral determinant and on the introduction of an effective perimeter probing the different time scales. A general expression of this length is derived for arbitrary networks. More specifically we consider the case of a ring connected to wires, to a square network, and to a Bethe lattice.Comment: 17 pages, 7 eps figure

    Persistent Current of Free Electrons in the Plane

    Full text link
    Predictions of Akkermans et al. are essentially changed when the Krein spectral displacement operator is regularized by means of zeta function. Instead of piecewise constant persistent current of free electrons on the plane one has a current which varies linearly with the flux and is antisymmetric with regard to all time preserving values of α\alpha including 1/21/2. Different self-adjoint extensions of the problem and role of the resonance are discussed.Comment: (Comment on "Relation between Persistent Currents and the Scattering Matrix", Phys. Rev. Lett. {\bf 66}, 76 (1991)) plain latex, 4pp., IPNO/TH 94-2

    An effective lowest Landau level treatment of demagnetization in superconducting mesoscopic disks

    Full text link
    Demagnetization, which is inherently present in the magnetic response of small finite-size superconductors, can be accounted for by an effective κ\kappa within a two-dimensional lowest Landau level approximation of the Ginzburg-Landau functional. We show this by comparing the equilibrium magnetization of superconducting mesoscopic disks obtained from the numerical solution of the three-dimensional Ginzburg-Landau equations with that obtained in the ``effective'' LLL approximation.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Phi_0 - Periodic Aharonov-Bohm Oscillations Survive Ensemble Averaging

    Full text link
    We have demonstrated that Phi_0 periodic Aharonov--Bohm oscillations measured in a ensemble of rings may survive after ensemble averaging procedure. The central point is the difference between the preparation stage of the ensemble and the subsequent measurement stage. The robustness of the effect under finite temperature and non--zero charging energy of rings is discussed.Comment: 11 pages, 2 figures, RevTex 3.0,WIS-93/84/Aug.-P

    Resonant Josephson current through a quantum dot

    Get PDF
    We calculate the DC Josephson current through a semiconducting quantum dot which is weakly coupled by tunnel barriers to two superconducting reservoirs. A Breit-Wigner resonance in the conductance corresponds to a resonance in the critical current, but with a different (non-lorentzian) lineshape.Comment: 5 pages including 1 figure; this paper was published in the proceedings of SQUID'91; it is archived here because of its relevance to cond-mat/011148

    Vortices in Ginzburg-Landau billiards

    Full text link
    We present an analysis of the Ginzburg-Landau equations for the description of a two-dimensional superconductor in a bounded domain. Using the properties of a special integrability point of these equations which allows vortex solutions, we obtain a closed expression for the energy of the superconductor. The role of the boundary of the system is to provide a selection mechanism for the number of vortices. A geometrical interpretation of these results is presented and they are applied to the analysis of the magnetization recently measured on small superconducting disks. Problems related to the interaction and nucleation of vortices are discussed.Comment: RevTex, 17 pages, 3 eps figure

    Effect of Magnetic Impurities on Energy Exchange between Electrons

    Get PDF
    In order to probe quantitatively the effect of Kondo impurities on energy exchange between electrons in metals, we have compared measurements on two silver wires with dilute magnetic impurities (manganese) introduced in one of them. The measurement of the temperature dependence of the electron phase coherence time on the wires provides an independent determination of the impurity concentration. Quantitative agreement on the energy exchange rate is found with a theory by G\"{o}ppert et al. that accounts for Kondo scattering of electrons on spin-1/2 impurities.Comment: 4 page
    corecore