558 research outputs found
Electroexcitation of the P33(1232), P11(1440), D13(1520), S11(1535) at Q^2=0.4 and 0.65(GeV/c)^2
Using two approaches: dispersion relations and isobar model, we have analyzed
recent high precision CLAS data on cross sections of \pi^0, \pi^+, and \eta
electroproduction on protons, and the longitudinally polarized electron beam
asymmetry for p(\vec{e},e'p)\pi^0 and p(\vec{e},e'n)\pi^+. The contributions of
the resonances P33(1232), P11(1440), D13(1520), S11(1535) to \pi
electroproduction and S11(1535) to \eta electroproduction are found. The
results obtained in the two approaches are in good agreement with each other.
There is also good agreement between amplitudes of the \gamma^* N \to S11(1535)
transition found in \pi and \eta electroproduction. For the first time accurate
results are obtained for the longitudinal amplitudes of the P11(1440),
D13(1520) and S11(1535) electroexcitation on protons.Comment: 9 pages, 9 figure
Energy Calibration of the JLab Bremsstrahlung Tagging System
In this report, we present the energy calibration of the Hall B
bremsstrahlung tagging system at the Thomas Jefferson National Accelerator
Facility. The calibration was performed using a magnetic pair spectrometer. The
tagged photon energy spectrum was measured in coincidence with pairs
as a function of the pair spectrometer magnetic field. Taking advantage of the
internal linearity of the pair spectrometer, the energy of the tagging system
was calibrated at the level of . The absolute energy scale
was determined using the rate measurements close to the end-point of
the photon spectrum. The energy variations across the full tagging range were
found to be MeV.Comment: 15 pages, 12 figure
Probing the nucleon structure with CLAS
An overview of recent results with CLAS is presented with emphasis on nucleon
resonance studies, nucleon spin structure, and generalized parton
distributions.Comment: Plenary talk presented at NSTAR 2007, Bonn, German
The Heavy Photon Search beamline and its performance
The Heavy Photon Search (HPS) is an experiment to search for a hidden sector
photon, aka a heavy photon or dark photon, in fixed target electroproduction at
the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment
searches for the ee decay of the heavy photon with bump hunt and
detached vertex strategies using a compact, large acceptance forward
spectrometer, consisting of a silicon microstrip detector (SVT) for tracking
and vertexing, and a PbWO electromagnetic calorimeter for energy
measurement and fast triggering. To achieve large acceptance and good vertexing
resolution, the first layer of silicon detectors is placed just 10 cm
downstream of the target with the sensor edges only 500 m above and below
the beam. Placing the SVT in such close proximity to the beam puts stringent
requirements on the beam profile and beam position stability. As part of an
approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3
GeV beam energies, respectively. This paper describes the beam line and its
performance during that data taking
The HPS electromagnetic calorimeter
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier
Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2
High momentum transfer electrodisintegration of polarized and unpolarized
deuterium targets, is studied. We show that the importance of final
state interactions-FSI, occuring when a knocked out nucleon interacts with the
other nucleon, depends strongly on the momentum of the spectator nucleon. In
particular, these FSI occur when the essential contributions to the scattering
amplitude arise from internucleon distances . But the absorption
of the high momentum may produce a point like configuration, which
evolves with time. In this case, the final state interactions probe the point
like configuration at the early stage of its evolution. The result is that
significant color transparency effects, which can either enhance or suppress
computed cross sections, are predicted to occur for .Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to
be published in Z.Phys.
Chiral Transparency
Color transparency is the vanishing of initial and final state interactions,
predicted by QCD to occur in high momentum transfer quasielastic nuclear
reactions. For specific reactions involving nucleons, the initial and final
state interactions are expected to be dominated by exchanges of pions. We argue
that these interactions are also suppressed in high momentum transfer nuclear
quasielastic reactions; this is ``chiral transparency". We show that studies of
the reaction could reveal the influence of chiral
transparency.Comment: 20 pages, three figures available by fax from
[email protected]; submitted to Phys. Rev.
Upper limits for the photoproduction cross section for the Φ−− (1860) pentaquark state off the deuteron
We searched for the Φ−−(1860) pentaquark in the photoproduction process off the deuteron in the Ξ−π−-decay channel using CLAS. The invariant-mass spectrum of the Ξ−π− system does not indicate any statistically significant enhancement near the reported mass M=1.860 GeV. The statistical analysis of the sideband-subtracted mass spectrum yields a 90%-confidence-level upper limit of 0.7 nb for the photoproduction cross section of Φ−−(1860) with a consecutive decay into Ξ−π− in the photon-energy range 4.5Ge
Correlation Effects in Nuclear Transparency
The Glauber approximation is used to calculate the contribution of nucleon
correlations in high-energy reactions. When the excitation energy of
the residual nucleus is small, the increase of the nuclear transparency due to
correlations between the struck nucleon and the other nucleons is mostly
compensated by a decrease of the transparency due to the correlations between
non detected nucleons. We derive Glauber model predictions for nuclear
transparency for the differential cross section when nuclear shell level
excitations are measured. The role of correlations in color transparency is
briefly discussed.Comment: 24 pages revtex, 4 uuencoded PostScript Figures as separate fil
Upper Limits for the Photoproduction Cross Section for the Φ−−(1860) Pentaquark State Off the Deuteron
We searched for the Φ--(1860) pentaquark in the photoproduction process off the deuteron in the Ξ-π--decay channel using CLAS. The invariant-mass spectrum of the Ξ-π- system does not indicate any statistically significant enhancement near the reported mass M = 1.860 GeV. The statistical analysis of the sideband-subtracted mass spectrum yields a 90%-confidence-level upper limit of 0.7 nb for the photoproduction cross section of Φ--(1860) with a consecutive decay into Ξ-π- in the photon-energy range 4.5 GeV \u3c Eγ \u3c 5.5 GeV
- …
