147 research outputs found

    Speed control of Five-Phase IPMSM through PI, SMC and FITSMC approaches under normal and open phase faulty conditions

    Get PDF
    This paper focuses on speed control of Five-Phase interior permanent magnet synchronous motor (IPMSM) through proportional-integral (PI) controller, sliding mode control (SMC) and novel fractional integral terminal sliding mode control (FITSMC) approaches under normal and open one-phase and two-phase faulty conditions. The SMC and FITSMC design processes have been deeply illustrated, while the stability of the aforementioned controllers has been guaranteed via Lyapunov theory. These ones are all designed based on rotor speed error which is generated from its measured and referenced values. Simulation results confirm the effectiveness and feasibility of the proposed control approaches in the fault tolerant control strategy and normal drive for Five-Phase IPMSM

    Remyelination of the corpus callosum by olfactory ensheathing cell in an experimental model of multiple sclerosis

    Get PDF
    Multiple Sclerosis (MS) causes loss of the myelin sheath, which leads to loss of neurons. Regeneration of myelin sheath stimulates axon regeneration and neurons� survival. In this study, olfactory ensheathing cell (OEC) transplantation is investigated to restore myelin sheath in an experimental model of MS in male mice.OECs were isolated from the olfactory mucosa of seven-day-old infant rats and cultured. Then, cells were evaluated and approved by flow cytometry by p75 and GFAP markers. A total of 32 mice (C57BL /6) were studied in four groups; 1) without any treatment (control), 2) Sham (receiving PBS), 3) MS model and 4) MS and OEC transplantation. MS was induced by adding Cuprizon in the diet of animals for six weeks. After the expiration of 20 days, histologic analysis was performed with approval of the presence of cells in the graft area and the removal of myelin and myelin regeneration with two types of luxal fast blue (LFB) staining and immunohistochemistry. The purity of the cells ensheathing the olfactory was 90. There was a significant difference in Myelin percentage of PBS and OEC recipient groups (P�0.05). MBP and PLP of the myelin sheath in the group receiving OECs were more than MS group.According to the findings, in MS model MBP and PLP of the myelin sheath is reduced. In the group receiving OECs, it was returned to a normal level significantly compared to the sham group received only PBS significant differences were observed. The OECs transplantation can improve myelin restoration. © 2015 Tehran University of Medical Sciences. All rights reserved

    Toll-like receptors (TLRs): An old family of immune receptors with a new face in cancer pathogenesis

    Get PDF
    In the dark path of tumorigenesis, the more carefully the cancer biology is studied, the more brilliant answers could be given to the countless questions about its orchestrating derivers. The identification of the correlation between Toll-like receptors (TLRs) and different processes involved in carcinogenesis was one of the single points of blinding light highlighting the interconnection between the immune system and cancer. TLRs are a wide family of single-pass membrane-spanning receptors that have developed through the evolution to recognize the structurally conserved molecules derived from microorganisms or damaged cells. But this is not everything about these receptors as they could orchestrate several downstream signalling pathways leading to the formation or suppression of cancer cells. The present review is tempted to provide a concise schematic about the biology and the characters of TLRs and also summarize the major findings of the regulatory role of TLRs and their associated signalling in the pathogenesis of human cancers

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease

    Get PDF
    BACKGROUND: Free radical scavengers have failed to improve patient outcomes, promoting the concept that clinically important oxidative stress may be mediated by alternative mechanisms. We sought to examine the association of emerging aminothiol markers of nonfree radical mediated oxidative stress with clinical outcomes. METHODS AND RESULTS: Plasma levels of reduced (cysteine and glutathione) and oxidized (cystine and glutathione disulphide) aminothiols were quantified by high performance liquid chromatography in 1411 patients undergoing coronary angiography (mean age 63 years, male 66%). All patients were followed for a mean of 4.7 ± 2.1 years for the primary outcome of all-cause death (n=247). Levels of cystine (oxidized) and glutathione (reduced) were associated with risk of death (P+1 SD and <-1 SD, respectively) were associated with higher mortality (adjusted hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.19-2.21; HR, 2.19; 95% CI, 1.50-3.19; respectively) compared with those outside these thresholds. Furthermore, the ratio of cystine/glutathione was also significantly associated with mortality (adjusted HR, 1.92; 95% CI, 1.39-2.64) and was independent of and additive to high-sensitivity C-reactive protein level. Similar associations were found for other outcomes of cardiovascular death and combined death and myocardial infarction. CONCLUSIONS: A high burden of oxidative stress, quantified by the plasma aminothiols, cystine, glutathione, and their ratio, is associated with mortality in patients with coronary artery disease, a finding that is independent of and additive to the inflammatory burden. Importantly, these data support the emerging role of nonfree radical biology in driving clinically important oxidative stress

    Losartan Improved Antioxidant Defense, Renal Function and Structure of Postischemic Hypertensive Kidney

    Get PDF
    Ischemic acute renal failure (ARF) is a highly complex disorder involving renal vasoconstriction, filtration failure, tubular obstruction, tubular backleak and generation of reactive oxygen species. Due to this complexity, the aim of our study was to explore effects of Angiotensin II type 1 receptor (AT1R) blockade on kidney structure and function, as well as oxidative stress in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. Experiments were performed on anaesthetized adult male SHR in the model of ARF with 40 minutes clamping the left renal artery. The right kidney was removed and 40 minutes renal ischemia was performed. Experimental groups received AT1R antagonist (Losartan) or vehicle (saline) in the femoral vein 5 minutes before, during and 175 minutes after the period of ischemia. Biochemical parameters were measured and kidney specimens were collected 24h after reperfusion. ARF significantly decreased creatinine and urea clearance, increased LDL and lipid peroxidation in plasma. Treatment with losartan induced a significant increase of creatinine and urea clearance, as well as HDL. Lipid peroxidation in plasma was decreased and catalase enzyme activity in erythrocytes was increased after losartan treatment. Losartan reduced cortico-medullary necrosis and tubular dilatation in the kidney. High expression of pro-apoptotic Bax protein in the injured kidney was downregulated after losartan treatment. Our results reveal that angiotensin II (via AT1R) mediates the most postischemic injuries in hypertensive kidney through oxidative stress enhancement. Therefore, blockade of AT1R may have beneficial effects in hypertensive patients who have developed ARF

    Hypoxia-inducible Factor-1 Activation in Nonhypoxic Conditions: The Essential Role of Mitochondrial-derived Reactive Oxygen Species

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor for responses to low oxygen. Here we report that the generation of mitochondrial reactive oxygen species are essential for regulating HIF-1 in normal oxygen conditions in the vasculature
    corecore