196 research outputs found

    Fluorine in animal nutrition

    Get PDF

    FASA Fire Airborne Spectral Analysis of natural disasters

    Get PDF
    At present the authors are developing the system FASA, an airborne combination of a Fourier Transform Spectrometer and an imaging system. The aim is to provide a system that is usable to investigate and monitor emissions from natural disasters such as wild fires and from volcanoes. Besides temperatures and (burned) areas FASA will also provide concentration profiles of the gaseous combustion products. These data are needed to improve the knowledge of the effects of such emissions on the global ecosystem. The paper presents a description of the instrumentation, the data evaluation procedure and shows first results of retrieval calculations based on simulated spectra

    Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling

    Get PDF
    Photodynamic therapy (PDT) of solid tumours causes tissue damage that elicits local and systemic inflammation with major involvement of interleukin-6 (IL-6). We have previously reported that PDT-treated cells lose responsiveness to IL-6 cytokines. Therefore, it is unclear whether PDT surviving tumour cells are subject to regulation by IL-6 and whether this regulation could contribute to tumour control by PDT. We demonstrate in epithelial tumour cells that while the action of IL-6 cytokines through their membrane receptors is attenuated, regulation by IL-6 via trans-signalling is established. Soluble interleukin-6 receptor-α (IL-6Rα) (sIL-6Rα) and IL-6 were released by leucocytes in the presence of conditioned medium from PDT-treated tumour cells. Cells that had lost their membrane receptor IL-6Rα due to PDT responded to treatment with the IL-6R–IL-6 complex (Hyper-IL-6) with activation of signal transducers and activator of transcription (STAT3) and ERK. Photodynamic therapy-treated cells, which were maintained during post-PDT recovery in presence of IL-6 or Hyper-IL-6, showed an enhanced suppression of proliferation. Cytokine-dependent inhibition of proliferation correlated with a decrease in cyclin E, CDK2 and Cdc25A, and enhancement of p27kip1 and hypophosphorylated Rb. The IL-6 trans-signalling-mediated attenuation of cell proliferation was also effective in vivo detectable by an improved Colon26 tumour cure by PDT combined with Hyper-IL-6 treatment. Prevention of IL-6 trans-signalling using soluble gp130 reduced curability. The data suggest that the post-PDT tumour milieu contains the necessary components to establish effective IL-6 trans-signalling, thus providing a means for more effective tumour control

    Study of the neoclassical radial electric field of the TJ-II flexible heliac

    Full text link
    Calculations of the monoenergetic radial diffusion coefficients are presented for several configurations of the TJ-II stellarator usually explored in operation. The neoclassical radial fluxes and the ambipolar electric field for the standard configuration are then studied for three different collisionality regimes, obtaining precise results in all cases

    Axially Symmetric Divertor Experiment (ASDEX) Upgrade Team (vol 81, 033507, 2010)

    Get PDF

    Induction of Immune Mediators in Glioma and Prostate Cancer Cells by Non-Lethal Photodynamic Therapy

    Get PDF
    BACKGROUND: Photodynamic therapy (PDT) uses the combination of photosensitizing drugs and harmless light to cause selective damage to tumor cells. PDT is therefore an option for focal therapy of localized disease or for otherwise unresectable tumors. In addition, there is increasing evidence that PDT can induce systemic anti-tumor immunity, supporting control of tumor cells, which were not eliminated by the primary treatment. However, the effect of non-lethal PDT on the behavior and malignant potential of tumor cells surviving PDT is molecularly not well defined. METHODOLOGY/PRINCIPAL FINDINGS: Here we have evaluated changes in the transcriptome of human glioblastoma (U87, U373) and human (PC-3, DU145) and murine prostate cancer cells (TRAMP-C1, TRAMP-C2) after non-lethal PDT in vitro and in vivo using oligonucleotide microarray analyses. We found that the overall response was similar between the different cell lines and photosensitizers both in vitro and in vivo. The most prominently upregulated genes encoded proteins that belong to pathways activated by cellular stress or are involved in cell cycle arrest. This response was similar to the rescue response of tumor cells following high-dose PDT. In contrast, tumor cells dealing with non-lethal PDT were found to significantly upregulate a number of immune genes, which included the chemokine genes CXCL2, CXCL3 and IL8/CXCL8 as well as the genes for IL6 and its receptor IL6R, which can stimulate proinflammatory reactions, while IL6 and IL6R can also enhance tumor growth. CONCLUSIONS: Our results indicate that PDT can support anti-tumor immune responses and is, therefore, a rational therapy even if tumor cells cannot be completely eliminated by primary phototoxic mechanisms alone. However, non-lethal PDT can also stimulate tumor growth-promoting autocrine loops, as seen by the upregulation of IL6 and its receptor. Thus the efficacy of PDT to treat tumors may be improved by controlling unwanted and potentially deleterious growth-stimulatory pathways
    corecore