733 research outputs found

    A connection between stress and development in the multicelular prokaryote Streptomyces coelicolor

    Get PDF
    Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. sH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of sH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and sH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of sH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis

    Down-Regulation of EBV-LMP1 Radio-Sensitizes Nasal Pharyngeal Carcinoma Cells via NF-κB Regulated ATM Expression

    Get PDF
    BACKGROUND:The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice. RESULTS:In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells. CONCLUSIONS:Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs

    Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally.</p> <p>Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR) as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT) has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose.</p> <p>Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment.</p> <p>Methods/design</p> <p>The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy.</p> <p>A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border), heart, vertebral bodies and pelvic bones.</p> <p>Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival.</p> <p>Discussion</p> <p>Intensity-modulated WAR provides a new promising option in the consolidation treatment of ovarian carcinoma in patients with a complete pathologic remission after adjuvant chemotherapy. Further consequent studies will be needed to enable firm conclusions regarding the value of consolidation radiotherapy within the multimodal treatment of advanced ovarian cancer.</p> <p>Trial registration</p> <p>Clinicaltrials.gov: <a href="http://clinicaltrials.gov/ct2/show/NCT01180504">NCT01180504</a></p

    Resection of the primary tumour versus no resection prior to systemic therapy in patients with colon cancer and synchronous unresectable metastases (UICC stage IV): SYNCHRONOUS - a randomised controlled multicentre trial (ISRCTN30964555)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, it remains unclear, if patients with colon cancer and synchronous unresectable metastases who present without severe symptoms should undergo resection of the primary tumour prior to systemic chemotherapy. Resection of the primary tumour may be associated with significant morbidity and delays the beginning of chemotherapy. However, it may prevent local symptoms and may, moreover, prolong survival as has been demonstrated in patients with metastatic renal cell carcinoma. It is the aim of the present randomised controlled trial to evaluate the efficacy of primary tumour resection prior to systemic chemotherapy to prolong survival in patients with newly diagnosed colon cancer who are not amenable to curative therapy.</p> <p>Methods/design</p> <p>The SYNCHRONOUS trial is a multicentre, randomised, controlled, superiority trial with a two-group parallel design. Colon cancer patients with synchronous unresectable metastases are eligible for inclusion. Exclusion criteria are primary tumour-related symptoms, inability to tolerate surgery and/or systemic chemotherapy and history of another primary cancer. Resection of the primary tumour as well as systemic chemotherapy is provided according to the standards of the participating institution. The primary endpoint is overall survival that is assessed with a minimum follow-up of 36 months. Furthermore, it is the objective of the trial to assess the safety of both treatment strategies as well as quality of life.</p> <p>Discussion</p> <p>The SYNCHRONOUS trial is a multicentre, randomised, controlled trial to assess the efficacy and safety of primary tumour resection before beginning of systemic chemotherapy in patients with metastatic colon cancer not amenable to curative therapy.</p> <p>Trial registration</p> <p><a href="http://www.controlled-trials.com/ISRCTN30964555">ISRCTN30964555</a></p

    Kidney disease in nail–patella syndrome

    Get PDF
    Nail–patella syndrome (NPS) is a pleiotropic autosomal-dominant disorder due to mutations in the gene LMX1B. It has traditionally been characterized by a tetrad of dermatologic and musculoskeletal abnormalities. However, one of the most serious manifestations of NPS is kidney disease, which may be present in up to 40% of affected individuals. Although LMX1B is a developmental LIM-homeodomain transcription factor, it is expressed in post-natal life in the glomerular podocyte, suggesting a regulatory role in that cell. Kidney disease in NPS seems to occur more often in some families with NPS, but it does not segregate with any particular mutation type or location. Two patterns of NPS nephropathy may be distinguished. Most affected individuals manifest only an accelerated age-related loss of filtration function in comparison with unaffected individuals. Development of symptomatic kidney failure is rare in this group, and proteinuria (present in approximately one-third) does not appear to be progressive. A small minority (5–10%) of individuals with NPS develop nephrotic-range proteinuria as early as childhood or young adulthood and progress to end-stage kidney failure over variable periods of time. It is proposed that this latter group reflects the effects of more global podocyte dysfunction, possibly due to the combination of a mutation in LMX1B along with an otherwise innocuous polymorphism or mutation involving any of several genes expressed in podocytes (e.g. NPHS2, CD2AP), the transription of which is regulated by LMX1B

    Mutation in utp15 Disrupts Vascular Patterning in a p53-Dependent Manner in Zebrafish Embryos

    Get PDF
    Angiogenesis is the process by which the highly branched and functional vasculature arises from the major vessels, providing developing tissues with nutrients, oxygen, and removing metabolic waste. During embryogenesis, vascular patterning is dependent on a tightly regulated balance between pro- and anti-angiogenic signals, and failure of angiogenesis leads to embryonic lethality. Using the zebrafish as a model organism, we sought to identify genes that influence normal vascular patterning.In a forward genetic screen, we identified mutant LA1908, which manifests massive apoptosis during early embryogenesis, abnormal expression of several markers of arterial-venous specification, delayed angiogenic sprouting of the intersegmental vessels (ISV), and malformation of the caudal vein plexus (CVP), indicating a critical role for LA1908 in cell survival and angiogenesis. Genetic mapping and sequencing identified a G to A transition in the splice site preceding exon 11 of utp15 in LA1908 mutant embryos. Overexpression of wild type utp15 mRNA suppresses all observed mutant phenotypes, demonstrating a causative relationship between utp15 and LA1908. Furthermore, we found that injecting morpholino oligonucleotides inhibiting p53 translation prevents cell death and rescues the vascular abnormalities, indicating that p53 is downstream of Utp15 deficiency in mediating the LA1908 phenotypes.Taken together, our data demonstrate an early embryonic effect of Utp15 deficiency on cell survival and the normal patterning of the vasculature and highlight an anti-angiogenic role of p53 in developing embryos

    Research strategies for organizational history:a dialogue between historical theory and organization theory

    Get PDF
    If history matters for organization theory, then we need greater reflexivity regarding the epistemological problem of representing the past; otherwise, history might be seen as merely a repository of ready-made data. To facilitate this reflexivity, we set out three epistemological dualisms derived from historical theory to explain the relationship between history and organization theory: (1) in the dualism of explanation, historians are preoccupied with narrative construction, whereas organization theorists subordinate narrative to analysis; (2) in the dualism of evidence, historians use verifiable documentary sources, whereas organization theorists prefer constructed data; and (3) in the dualism of temporality, historians construct their own periodization, whereas organization theorists treat time as constant for chronology. These three dualisms underpin our explication of four alternative research strategies for organizational history: corporate history, consisting of a holistic, objectivist narrative of a corporate entity; analytically structured history, narrating theoretically conceptualized structures and events; serial history, using replicable techniques to analyze repeatable facts; and ethnographic history, reading documentary sources "against the grain." Ultimately, we argue that our epistemological dualisms will enable organization theorists to justify their theoretical stance in relation to a range of strategies in organizational history, including narratives constructed from documentary sources found in organizational archives. Copyright of the Academy of Management, all rights reserved

    Uncovering Genes with Divergent mRNA-Protein Dynamics in Streptomyces coelicolor

    Get PDF
    Many biological processes are intrinsically dynamic, incurring profound changes at both molecular and physiological levels. Systems analyses of such processes incorporating large-scale transcriptome or proteome profiling can be quite revealing. Although consistency between mRNA and proteins is often implicitly assumed in many studies, examples of divergent trends are frequently observed. Here, we present a comparative transcriptome and proteome analysis of growth and stationary phase adaptation in Streptomyces coelicolor, taking the time-dynamics of process into consideration. These processes are of immense interest in microbiology as they pertain to the physiological transformations eliciting biosynthesis of many naturally occurring therapeutic agents. A shotgun proteomics approach based on mass spectrometric analysis of isobaric stable isotope labeled peptides (iTRAQ™) enabled identification and rapid quantification of approximately 14% of the theoretical proteome of S. coelicolor. Independent principal component analyses of this and DNA microarray-derived transcriptome data revealed that the prominent patterns in both protein and mRNA domains are surprisingly well correlated. Despite this overall correlation, by employing a systematic concordance analysis, we estimated that over 30% of the analyzed genes likely exhibited significantly divergent patterns, of which nearly one-third displayed even opposing trends. Integrating this data with biological information, we discovered that certain groups of functionally related genes exhibit mRNA-protein discordance in a similar fashion. Our observations suggest that differences between mRNA and protein synthesis/degradation mechanisms are prominent in microbes while reaffirming the plausibility of such mechanisms acting in a concerted fashion at a protein complex or sub-pathway level
    corecore