2,953 research outputs found

    Profitable Scheduling on Multiple Speed-Scalable Processors

    Full text link
    We present a new online algorithm for profit-oriented scheduling on multiple speed-scalable processors. Moreover, we provide a tight analysis of the algorithm's competitiveness. Our results generalize and improve upon work by \textcite{Chan:2010}, which considers a single speed-scalable processor. Using significantly different techniques, we can not only extend their model to multiprocessors but also prove an enhanced and tight competitive ratio for our algorithm. In our scheduling problem, jobs arrive over time and are preemptable. They have different workloads, values, and deadlines. The scheduler may decide not to finish a job but instead to suffer a loss equaling the job's value. However, to process a job's workload until its deadline the scheduler must invest a certain amount of energy. The cost of a schedule is the sum of lost values and invested energy. In order to finish a job the scheduler has to determine which processors to use and set their speeds accordingly. A processor's energy consumption is power \Power{s} integrated over time, where \Power{s}=s^{\alpha} is the power consumption when running at speed ss. Since we consider the online variant of the problem, the scheduler has no knowledge about future jobs. This problem was introduced by \textcite{Chan:2010} for the case of a single processor. They presented an online algorithm which is αα+2eα\alpha^{\alpha}+2e\alpha-competitive. We provide an online algorithm for the case of multiple processors with an improved competitive ratio of αα\alpha^{\alpha}.Comment: Extended abstract submitted to STACS 201

    Leaf-wise intersections and Rabinowitz Floer homology

    Get PDF
    In this article we explain how critical points of a particular perturbation of the Rabinowitz action functional give rise to leaf-wise intersection points in hypersurfaces of restricted contact type. This is used to derive existence and multiplicity results for leaf-wise intersection points in hypersurfaces of restricted contact type in general exact symplectic manifolds. The notion of leaf-wise intersection points was introduced by Moser.Comment: 18 pages, 1 figure; v3: completely rewritten, improved result

    Rapid generation of all-optical K 39 Bose-Einstein condensates using a low-field Feshbach resonance

    Get PDF
    Ultracold potassium is an interesting candidate for quantum technology applications and fundamental research as it allows controlling intra-atomic interactions via low-field magnetic Feshbach resonances. However, the realization of high-flux sources of Bose-Einstein condensates remains challenging due to the necessity of optical trapping to use magnetic fields as free parameters. We investigate the production of all-optical K39 Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near 33 G. By tuning the scattering length in a range between 75a0 and 300a0 we demonstrate a tradeoff between evaporation speed and final atom number and decrease our evaporation time by a factor of 5 while approximately doubling the evaporation flux. To this end, we are able to produce fully condensed ensembles with 5.8×104 atoms within 850-ms evaporation time at a scattering length of 232a0 and 1.6×105 atoms within 3.9s at 158a0, respectively. We deploy a numerical model to analyze the flux and atom number scaling with respect to scattering length, identify current limitations, and simulate the optimal performance of our setup. Based on our findings we describe routes towards high-flux sources of ultracold potassium for inertial sensing

    An analytical stability theory for Faraday waves and the observation of the harmonic surface response

    Full text link
    We present an analytical stability theory for the onset of the Faraday instability, applying over a wide frequency range between shallow water gravity and deep water capillary waves. For sufficiently thin fluid layers the surface is predicted to occur in harmonic rather than subharmonic resonance with the forcing. An experimental confirmation of this result is given. PACS: 47.20.Ma, 47.20.Gv, 47.15.CbComment: 10 pages (LaTeX-file), 3 figures (Postscript) Submitted for publicatio

    High-speed Civil Transport Aircraft Emissions

    Get PDF
    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance

    Persistent Chaos in High Dimensions

    Full text link
    An extensive statistical survey of universal approximators shows that as the dimension of a typical dissipative dynamical system is increased, the number of positive Lyapunov exponents increases monotonically and the number of parameter windows with periodic behavior decreases. A subset of parameter space remains in which topological change induced by small parameter variation is very common. It turns out, however, that if the system's dimension is sufficiently high, this inevitable, and expected, topological change is never catastrophic, in the sense chaotic behavior is preserved. One concludes that deterministic chaos is persistent in high dimensions.Comment: 4 pages, 3 figures; Changes in response to referee comment

    Understanding the complex phase diagram of uranium: the role of electron-phonon coupling

    Full text link
    We report an experimental determination of the dispersion of the soft phonon mode along [1,0,0] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent theory. New calculations demonstrate the strong pressure (and momentum) dependence of the electron-phonon coupling, whereas the Fermi-surface nesting is surprisingly independent of pressure. This allows a full understanding of the complex phase diagram of uranium, and the interplay between the charge-density wave and superconductivity

    The relationship of alignment hyperacuity to stereopsis

    Get PDF
    Human ability to monocularly detect spatial misalignment is functionally more precise than predicted by the diameter of one foveal cone. The spatial thresholds for vernier alignment are approximately 8 to 13 arc seconds of visual angle, which is more sensitive than expected. Although threshold stereopsis (another hyperacuity) seems to be approximately double alignment hyperacuity values, studies have not conclusively shown a definite relationship to ex1st. Additionally, these measurements have not been widely tested in clinical settings. This study examines the correlation between threshold stereoacuity and the monocular alignment hyperacuity measures. Twenty six subjects were evaluated measuring threshold stereopsis with the Mentor BVAT II Visual Acuity Tester and monocular alignment hyperacuity with software designed at Pacific University College of Optometry. This study supports a relationship of sum of one standard deviation of hyperacuity data distributed for each eye with stereopsis. However, the relationship is not statistically significant, most likely due to the lack of testing precision and variability in individual performance, specifically in binocular function and appreciation of stereopsis. Increased knowledge in the areas of monocular alignment hyperacuity and threshold stereopsis may aid optometric practitioners to better understand how these two factors play a role in such clinical conditions as unexplained asthenopia, amblyopia, strabismus and stereoacuity potential. However, clinical testing of an individual patient would not seem appropriate with this testing paradigm

    Epithelial Overexpression of BDNF or NT4 Disrupts Targeting of Taste Neurons That Innervate the Anterior Tongue

    Get PDF
    AbstractBrain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) are essential for the survival of geniculate ganglion neurons, which provide the sensory afferents for taste buds of the anterior tongue and palate. To determine how these target-derived growth factors regulate gustatory development, the taste system was examined in transgenic mice that overexpress BDNF (BDNF-OE) or NT4 (NT4-OE) in basal epithelial cells of the tongue. Overexpression of BDNF or NT4 caused a 93 and 140% increase, respectively, in the number of geniculate ganglion neurons. Surprisingly, both transgenic lines had severe reduction in fungiform papillae and taste bud number, primarily in the dorsal midregion and ventral tip of the tongue. No alterations were observed in taste buds of circumvallate or incisal papillae. Fungiform papillae were initially present on tongues of newborn BDNF-OE animals, but many were small, poorly innervated, and lost postnatally. To explain the loss of nerve innervation to fungiform papillae, the facial nerve of developing animals was labeled with the lipophilic tracer DiI. In contrast to control mice, in which taste neurons innervated only fungiform papillae, taste neurons in BDNF-OE and NT4-OE mice innervated few fungiform papillae. Instead, some fibers approached but did not penetrate the epithelium and aberrant innervation to filiform papillae was observed. In addition, some papillae that formed in transgenic mice had two taste buds (instead of one) and were frequently arranged in clusters of two or three papillae. These results indicate that target-derived BDNF and NT4 are not only survival factors for geniculate ganglion neurons, but also have important roles in regulating the development and spatial patterning of fungiform papilla and targeting of taste neurons to these sensory structures
    corecore