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LEAF-WISE INTERSECTIONS AND RABINOWITZ FLOER HOMOLOGY

PETER ALBERS AND URS FRAUENFELDER

Abstract. In this article we explain how critical points of a particular perturbation of the
Rabinowitz action functional give rise to leaf-wise intersection points in hypersurfaces of
restricted contact type. This is used to derive existence and multiplicity results for leaf-wise
intersection points in hypersurfaces of restricted contact type in general exact symplectic
manifolds. The notion of leaf-wise intersection points was introduced by Moser [Mos78].

1. Introduction

We consider a closed hypersurface Σ ⊂ (M,ω = dλ) in an exact symplectic manifold (M,ω)
such that (Σ, α := λ|Σ) is a contact manifold. Moreover, we assume that Σ bounds a compact
region in M and that M is convex at infinity, that is, M is isomorphic to the symplectization
of a compact contact manifold at infinity. Σ is foliated by the leaves of the characteristic line
bundle which is spanned by the Reeb vector field R of α. For x ∈ Σ we denote by Lx the
leaf through x. Furthermore, we denote by Hamc(M,ω) the group of compactly supported
Hamiltonian diffeomorphism. The following question was addressed by Moser [Mos78].

Question. Given φ ∈ Hamc(M,ω), does there exist a leaf-wise intersection point, that is,
x ∈ Σ with φ(x) ∈ Lx?

Definition 1.1. We denote by ℘(Σ, α) > 0 the minimal period of a Reeb orbit of (Σ, α)
which is contractible in M . If there exists no contractible Reeb orbit we set ℘(Σ, α) = ∞.

Our first main result is the following.

Theorem A. If φ ∈ Hamc(M,ω) has Hofer norm ||φ|| < ℘(Σ, α), then there exists a leaf-wise

intersection point for φ.

Remark 1.2. The case (M,Σ) = (R2n, S2n−1) shows that Theorems A is sharp since ℘(S2n−1)
equals the displacement energy of the sphere S2n−1. In particular, the smallness assumption
in Theorem A is necessary.

The proof of Theorem A uses a stretching of the neck argument for gradient flow lines of
a perturbed, time dependent Rabinowitz action functional. More sophisticatedly, using local
Rabinowitz Floer homology around the action value 0 we obtain the following multiplicity
result.

Theorem B. For a generic Hamiltonian diffeomorphism φ ∈ Hamc(M,ω) with ||φ|| < ℘(Σ, α)

#{leaf-wise intersection points} ≥
∑

i

bi(Σ,Z/2) . (1.1)
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If the full Rabinowitz Floer homology is non-zero we obtain much stronger results. For the
construction of Rabinowitz Floer homology we refer the reader to [CF09], see also Section 2.3.

Theorem C. If the Rabinowitz Floer homology of (M,Σ) does not vanish, RFH(M,Σ) 6= 0,
then there always exists a leaf-wise intersection point for ψ ∈ Hamc(M,ω).

We point out that we make no assumption on the Hofer norm of ψ. Moreover, as mentioned
above, without the assumption RFH(M,Σ) 6= 0 Theorem C does not hold in general.

Remark 1.3. In the article [CF09] examples with non-vanishing Rabinowitz Floer homology
are provided. See [CFO09] for further examples.

Remark 1.4. The leaf-wise intersection points found in Theorems A and B are always con-
tractible in the following sense. For any Hamiltonian function H : S1 ×M −→ R such that
φ = φH the leaf-wise intersection point can be completed to a loop γ by first following the
flow of φtH and then the Reeb flow in such a way that γ is contractible in M , see Lemma 2.13
below.

Remark 1.5. As in Theorem B local Rabinowitz Floer homology around the action value
of a non-contractible Reeb orbit can be considered. Similar techniques then lead to existence
results for non-contractible leaf-wise intersections points. In fact, generically each Reeb orbit
gives rise to two different leaf-wise intersection points since the local homology is isomorphic
to the homology of a circle.

1.1. History of the problem and related results. The problem addressed above is a
special case of the leaf-wise coisotropic intersection problem. For that let N ⊂ (M,ω) be a
coisotropic submanifold. Then N is foliated by isotropic leafs. The problem asks for a leaf L
such that φ(L) ∩ L 6= ∅ for φ ∈ Hamc(M,ω).

The first result was obtained by Moser in [Mos78] for simply connected M and C1-small
φ. This was later generalized by Banyaga [Ban80] to non-simply connected M .

The C1-smallness assumption was replaced by Hofer, Ekeland-Hofer in [Hof90],[EH89] for
hypersurfaces of restricted contact type in R

2n by a much weaker smallness assumption,
namely that the Hofer norm of φ is smaller than a certain symplectic capacity. Only recently,
the result by Ekeland-Hofer was generalized in two different directions. It was extended
by Dragnev [Dra08] to so-called “coisotropic submanifolds of contact type in R

2n”. Among
other results Ginzburg [Gin07] generalized from restricted contact type in R

2n to restricted
contact type in subcritical Stein manifolds. Moreover, examples by Ginzburg [Gin07] show
that the Ekeland-Hofer result is a symplectic rigidity result, namely it becomes wrong for
arbitrary hypersurfaces. Recently Ziltener [Zil08] and Gurel [Gur09] obtained results on leaf-
wise intersection points using entirely different methods from this article.

Theorem A gives a complete answer to the existence problem of leaf-wise intersection points
within the class of restricted contact type hypersurfaces. After this article was published on
the arXiv an independent proof of Theorem A was given by Gurel [Gur09].

Theorem B is (to the authors’ knowledge) the first time that a general multiplicity result for
leaf-wise intersection points in the Hofer-small case is proved. In the C1-small case multiplicity
results were obtained by Moser and Banyaga. In the special case of fibrations Ziltener [Zil08]
proves similar multiplicity results to Theorem B.

Theorem C is (again to the authors’ knowledge) the first global (i.e. valid for all Hamiltonian
diffeomorphisms) existence result for leaf-wise intersection points.
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2. A perturbation of the Rabinowitz action functional

We recall that Σ ⊂ (M,ω = dλ) is a closed hypersurface in an exact symplectic manifold
such that (Σ, α = λ|Σ) is a contact manifold. Moreover, Σ is assumed to bound a compact
region in M . We denote by R the Reeb vector field of α. Moreover, we define the vector field
Y by dλ(Y, ·) = λ(·).

Lemma 2.1. The vector field Y is a Liouville vector field for (Σ, α), that is, LY ω = ω and
Y ⋔ Σ. In particular, (Σ, α) is of restricted contact type.

Proof. Since λ(Y ) = dλ(Y, Y ) = 0 we compute LY λ = d(ιY λ) + ιY dλ = λ. Since the Lie
derivative commutes with the exterior differential we conclude LY ω = ω. If we assume that
Y ∈ TxΣ then 0 = dα(Y,R) = dλ(Y,R) = λ(R) = α(R) = 1. This contradiction shows
Y ⋔ Σ. �

The flow φtY of the Liouville vector field is defined near Σ. We fix δ0 > 0 so that φtY |Σ is

defined for all |t| ≤ δ0 and define a function Ĝ by Ĝ(φtY (x)) = t for all x ∈ Σ. For 0 < δ ≤ δ0
we set

Uδ := {x ∈M | |Ĝ(x)| < δ}. (2.1)

Since Σ bounds we can choose a G :M −→ R which is locally constant outside Uδ0 , coincides

with Ĝ on U δ0
2

, and such that G−1(0) = Σ. Thus, the Hamiltonian vector field XG of G

satisfies XG|Σ = R. Finally, we fix a smooth function ρ : S1 −→ R with
∫ 1
0 ρ(t)dt = 1 and

supp(ρ) ⊂ (0, 12 ) and set

F (t, x) := ρ(t)G(x) . (2.2)

Therefore, the Hamiltonian vector fields satisfy

XF (t, x) = ρ(t)XG(x) . (2.3)

We recall the definition of the positive and negative part of the Hofer norm.

Definition 2.2. Let H : S1 ×M −→ R a compactly supported Hamiltonian function. We
set

||H||+ :=

∫ 1

0
max
x∈M

H(t, x)dt ||H||− := −

∫ 1

0
min
x∈M

H(t, x)dt = || −H||+ (2.4)

and

||H|| = ||H||+ + ||H||− . (2.5)

For φ ∈ Hamc(M,ω) the Hofer norm is

||φ|| = inf{||H|| | φ = φH} . (2.6)

Lemma 2.3. For all φ ∈ Hamc(M,ω)

||φ|| = |||φ||| := inf{||H|| | φ = φH , H(t, ·) = 0 ∀t ∈ [0, 12 ]} . (2.7)
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Proof. ||φ|| ≤ |||φ||| is obvious. To prove the reverse inequality pick a smooth monotone
map r : [0, 1] → [0, 1] with r(12) = 0 and r(1) = 1. For H with φH = φ we set Hr(t, x) :=
r′(t)H(r(t), x). Then a direct computation shows φHr = φH , ||Hr|| = ||H||, and Hr(t, x) = 0
for all t ∈ [0, 12 ]. This finishes the proof. �

From now on we assume that H(t, ·) = 0 for all t ∈ [0, 12 ]. Then for F as in equation (2.2)
the perturbed Rabinowitz action functional is defined as follows

AF
H(u, η) := −

∫ 1

0
u∗λ−

∫ 1

0
H(t, u(t))dt − η

∫ 1

0
F (t, u(t))dt (2.8)

where u ∈ C∞(S1,M) and η ∈ R. Critical points (u, η) ∈ CritAF
H satisfy

∂tu = XH(t, u) + ηXF (t, u)

∫ 1

0
F (t, u)dt = 0





(2.9)

In the following proposition we observe that existence of a critical point of AF
H gives rise to

a positive answer of the leaf-wise intersection problem mentioned in the introduction.

Proposition 2.4. Let (u, η) ∈ CritAF
H. Then x = u(12 ) satisfies φH(x) ∈ Lx. Thus, x is a

leaf-wise intersection point.

Proof. For t ∈ [0, 12 ] we compute, using H(t, ·) = 0 for all t ≤ 1
2 ,

d

dt
G(u(t)) = dG(u(t)) · ∂tu

= dG(u(t)) · [XH(t, u)︸ ︷︷ ︸
=0

+η XF (t, u)︸ ︷︷ ︸
=ρ(t)XG(u)

]

= 0 ,

(2.10)

since dG(XG) = 0. Hence G(u(t)) = c =const for t ≤ 1
2 . Thus,

0 =

∫ 1

0
F (t, u)dt =

∫ 1

0
ρ(t)G(u(t))dt = c (2.11)

Therefore, G(u(t)) = c = 0, and since G−1(0) = Σ we have u(t) ∈ Σ for t ∈ [0, 12 ]. In

particular, u(12 ), u(0) = u(1) ∈ Σ.

For t ∈ [12 , 1] we have F (t, ·) = 0. Thus, the loop u solves the equation ∂tu = XH(t, u) on

[12 , 1], and therefore, u(1) = φH(u(12 )). We conclude that φH(u(12 )) ∈ Σ. Using again that for

t ∈ [0, 12 ], ∂tu = XH(t, u) + ηXF (t, u) = ηXF (t, u) = ηρ(t)XG(u) and u(t) ∈ Σ we see that
u(1) = u(0) ∈ Lu( 1

2
) since XG|Σ = R.

With the definition x := u(12 ) we then have φH(x) = u(1) ∈ Lx. This concludes the
proof. �

In the following we establish necessary analytical properties of the perturbed Rabinowitz
action functional. For later purposes we allow from now on the function H to be s-dependent
as follows: Hs(t, x) = H−(t, x) for s ≤ −1 and Hs(t, x) = H+(t, x) for s ≥ 1. Moreover,
Hs(t, ·) = 0 for t ∈ [0, 12 ], and Hs has compact support uniformly in s. We choose a family
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J(s, t) of compatible almost complex structures on M such that J(s, t) is independent of s
for s ≤ −1 and s ≥ 1. The norm of the gradient of AF

H equals

||∇AF
H(u, η)||2 = ||∂tu−XHs(t, u)− ηXF (t, u)||

2
L2 +

∣∣∣
∫ 1

0
F (t, u(t))dt

∣∣∣
2

(2.12)

where the L2 norm is taken with respect to the metric g(s,t)(·, ·) := ω(·, J(s, t)·). We denote
by L the component of the contractible loops in M .

Definition 2.5. A gradient flow line of AF
H is (formally) a map w = (u, η) ∈ C∞(R,L ×R)

solving the ODE

∂sw(s) +∇sA
F
H(w(s)) = 0 , (2.13)

where the gradient is taken with respect to metric ms defined as follows. Let (û1, η̂1) and
(û2, η̂2) be two tangent vectors in T(u,η)(L × R). We set

ms

(
(û1, η̂1), (û2, η̂2)

)
:=

∫ 1

0
g(s,t)

(
û1, û2

)
dt+ η̂1η̂2 . (2.14)

According to Floer’s interpretation, [Flo88b], this means that u and η are smooth maps
u : R× S1 −→M and η : R −→ R solving

∂su+ J(s, t, u)
(
∂tu−XHs(t, u)− ηXF (t, u)

)
= 0

∂sη −

∫ 1

0
F (t, u)dt = 0.





(2.15)

Definition 2.6. The energy of a map w ∈ C∞(R,L × R) is defined as

E(w) :=

∫ ∞

−∞
||∂sw||

2ds . (2.16)

Lemma 2.7. Let w be a gradient flow line of ∇sA
F
H . Then

E(w) ≤ AF
H−

(w−)−AF
H+

(w+) +

∫ ∞

−∞
||∂sHs||−ds . (2.17)

Moreover, equality holds if ∂sHs = 0.

Proof. It follows from the gradient flow equation (2.13)

E(w) = −

∫ ∞

−∞
dAF

Hs
(w(s))[∂sw]ds

= −

∫ ∞

−∞

d

ds

(
AF

Hs
(w(s))

)
ds+

∫ ∞

−∞

(
∂sA

F
Hs

)
(w)ds

= AF
H−

(w−)−AF
H+(w+)−

∫ ∞

−∞

∫ 1

0
∂sHs(t, u)dtds

≤ AF
H−

(w−)−AF
H+

(w+) +

∫ ∞

−∞
||∂sHs||−ds .

(2.18)

�
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Lemma 2.8. Let w be a gradient flow line of ∇sA
F
H . Then

|AF
H(w(s0))| ≤ max{AF

H−
(w−),−AF

H+
(w+)}+

∫ ∞

−∞
||∂sHs||−ds (2.19)

for all s0 ∈ R.

Proof. The proof follows from the proof of Lemma 2.7 by replacing in the first line
∫∞
−∞ by∫ s0

−∞ resp.
∫∞
s0

, and E(w) ≥ 0. �

Theorem 2.9. Let wn = (un, ηn) be a sequence of gradient flow lines for which there exists

a < b such that

a ≤ AF
H

(
wn(s)

)
≤ b ∀s ∈ R . (2.20)

Then for every reparametrisation sequence σn ∈ R the sequence wn(·+ σn) has a subsequence

which converges in C∞
loc(R,L × R).

Proof. The proof follows from standard arguments in Floer theory as soon as we establish

(1) a uniform L∞ bound on un,
(2) a uniform L∞ bound on ηn,
(3) a uniform L∞ bound on the derivatives of un.

Indeed, assuming (1)–(3) bootstrapping the gradient-flow equation will establish C∞
loc-convergence,

see [MS04, Appendix B.4]. The L∞ bound on un follows from the convexity at infinity of
(M,ω). Once the L∞ bound on ηn has been established, the L∞ bound on the derivatives
of un follows in the following way. If the derivatives would explode we would obtain non-
constant holomorphic spheres as limits, see [MS04, Chapter 4.2]. But in an exact symplectic
manifold non-constant holomorphic spheres don’t exist. The L∞ bound on ηn is the content
of the following proposition. �

Proposition 2.10. Given critical points w−, w+ ∈ CritAF
H there exists a constant κ =

κ(w−, w+) such that every gradient flow line w = (u, η) of AF
H with lims→±∞ = w± sat-

isfies

||η||L∞(R) ≤ κ . (2.21)

The proof of the proposition goes along the same lines as in [CF09, Corollary 3.3] and relies
on the following lemma. The proof of the proposition is given after the proof of the lemma.

Lemma 2.11. There exists ǫ > 0 and C > 0 such that for all (u, η) ∈ C∞(S1,M) × R we
have

||∇sA
F
H(u, η)|| < ǫ =⇒ |η| ≤ C

(
|AF

H(u, η)| + 1
)

(2.22)

where the norm of the gradient is given in equation (2.12).

Proof. We will use again the notation introduced below the proof of Lemma 2.1. We fix

0 < 2δ < min{1, δ0}, in particular, we have G(x) = Ĝ(x) for x ∈ Uδ.
Claim 1: Assume that u(t) ∈ Uδ for all t ∈ (12 , 1). Then there exists a constant C1 > 0

|η| ≤ C1

(
|AF

H(u, η)| + ||∇sA
F
H(u, η)|| + 1

)
. (2.23)
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Proof of Claim 1. We compute

|AF
H(u, η)| =

∣∣∣∣−
∫ 1

0
u∗λ−

∫ 1

0
H(s, t, u(t))dt − η

∫ 1

0
F (t, u(t))dt

∣∣∣∣

≥

∣∣∣∣−
∫ 1

0
u∗λ

∣∣∣∣− ||H||L∞ − δ|η|

≥ −||H||L∞ − δ|η| +

∣∣∣∣
∫ 1

0
λ(u(t))

[
∂tu−XHs(t, u)− ηXF (t, u)

]
dt

+

∫ 1

1
2

λ(u(t))
[
XHs(t, u)

]
dt+

∫ 1
2

0
λ(u(t))

[
η XF (t, u)︸ ︷︷ ︸
=ρ(t)R(u(t))

]
dt

︸ ︷︷ ︸
=η

∣∣∣∣

≥ |η| − δ|η| − Cλ,δ ||∂tu−XHs(t, u)− ηXF (t, u)||L1 − Cλ,H

≥ 1
2 |η| − Cλ,δ ||∂tu−XHs(t, u) − ηXF (t, u)||L2 − Cλ,H

≥ 1
2 |η| − Cλ,δ ||∇sA

F
H(u, η)||L2 − Cλ,H

where Cλ,δ := ||λ|Uδ
||L∞ and Cλ,H := ||H||L∞ + Cλ,δ||XH ||L∞ . This inequality immediately

implies Claim 1. �

Claim 2: There exists ǫ = ǫ(δ) with the following property. If for (u, η) there exists t ∈ [0, 12 ]

with G(u(t)) ≥ δ then ||∇sA
F
H(u, η)|| ≥ ǫ

Proof of Claim 2. If in addition G(u(t)) ≥ δ
2 holds for all t ∈ [0, 12 ] then using (2.12)

||∇sA
F
H(u, η)|| ≥

∣∣∣
∫ 1

0
F (t, u(t))dt

∣∣∣ ≥ δ

2

∫ 1

0
ρ(t)dt =

δ

2
(2.24)

since F (t, x) = ρ(t)G(x). Otherwise there exists t′ ∈ [0, 12 ] with G(u(t
′)) < δ

2 . Thus, we can

find 0 ≤ a < b ≤ 1
2 such that for all t ∈ [a, b]

δ

2
= G(u(a)) ≤ G(u(t)) ≤ G(u(b)) = δ (2.25)

or

δ = G(u(a)) ≥ G(u(t)) ≥ G(u(b)) =
δ

2
. (2.26)
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We only treat the first case. The second is completely analogous.

||∇sA
F
H(u, η)|| ≥ ||∂tu−XHs(t, u)− ηXF (t, u)||L2

≥



∫ b

a

||∂tu−XHs(t, u)︸ ︷︷ ︸
=0

−ηXF (t, u)||
2dt




1
2

≥



∫ b

a

1

||∇G||2
∣∣gt(∂tu,∇G)− η gt(XF (t, u),∇G)︸ ︷︷ ︸

=0

∣∣2dt




1
2

≥
1

||∇G||L∞

(∫ b

a

∣∣∣∣
d

dt
G(u(t))

∣∣∣∣
2

dt

)1
2

≥
1

||∇G||L∞

∫ b

a

∣∣∣∣
d

dt
G(u(t))

∣∣∣∣ dt

≥
1

||∇G||L∞

∫ b

a

d

dt
G(u(t))dt

=
δ

2||∇G||L∞

(2.27)

where we used gt(XF ,∇G) = dG(XF ) = ρ(t)dG(XG) = ρ(t)ω(XG,XG) = 0. Since ||∇G||L∞ ≥
1 we set ǫ(δ) := δ

2 . This proves Claim 2. �

Setting 3δ := min{1, δ0}, ǫ := ǫ(δ) according to Claim 2, and C := C1 + ǫ, C1 as in Claim
1, the lemma follows. �

Proof. (of Proposition 2.10) From Lemma 2.7 it follows that

E(w) ≤ AF
H−

(w−)−AF
H+

(w+) + CH (2.28)

where CH :=
∫
||∂sHs||−ds. We fix ǫ and C as in Lemma 2.11. For σ ∈ R we define

τ(σ) := inf{τ ≥ 0 | ||∇sA
F
H(w(σ + τ))|| ≤ ǫ} (2.29)

and compute

E(w) ≥

∫ σ+τ(σ)

σ

||∇sA
F
H(w(s))||2︸ ︷︷ ︸
≥ǫ2

ds ≥ τ(σ)ǫ2 (2.30)

From the second equation in (2.15) it follows directly that

||∂sη||L∞ ≤ ||F ||L∞ . (2.31)

The norm ||F ||L∞ is finite since dF = 0 outside a compact set. Finally according to Lemma
2.8

|AF
H(w(s))| ≤ max

{
AF

H(w−),−AF
H(w+)

}
+ CH =: Ξ (2.32)
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The last three inequalities together with Lemma 2.11 imply

|η(σ)| ≤ |η(σ + τ(σ))| +

∫ σ+τ(σ)

σ

|∂sη|ds

≤ C
( ∣∣AF

H

(
w(σ + τ(σ))

)∣∣+ 1
)
+ ||F ||L∞τ(σ)

≤ C(Ξ + 1) + ||F ||L∞

E

ǫ2
.

(2.33)

This proves the proposition. �

2.1. Proof of Theorem A. Recall that A : E −→ R is a functional and C ⊂ CritA then C
is called a Morse-Bott component if the following two conditions hold.

• C is a submanifold of E
• For all c ∈ C we have TcC = kerHA(c) where HA is the Hessian of A.

Lemma 2.12. The subset Σ ⊂ CritAF is a Morse-Bott component.

Proof. Let c = (p, 0) with p ∈ Σ. An element (v̂, η̂) ∈ C∞(S1, TpM)× R is in the kernel of
the Hessian H F

A (c) if and only if it solves the following equations

∂tv̂ = η̂ρ(t)XG(p)
∫ 1

0
ρ(t)dG(p)v̂dt = 0



 (2.34)

Integrating the first equation we obtain

v̂(1) = v̂(0) + η̂XG(p) . (2.35)

Using that v̂ is a loop and XG(p) 6= 0 we conclude η̂ = 0 and thus v̂ = v̂0 ∈ TpM . The second
equation implies

dG(p)v̂0 = 0 (2.36)

and therefore v̂0 ∈ TpΣ = ker dG(p). �

Proof. We choose H : S1 ×M −→ R such that φH = φ, ||H|| < ℘(Σ, α), and such that
H(t, x) = 0 for all t ∈ [0, 12 ], see Lemma 2.3. For r ≥ 0 we choose a smooth family of functions
βr ∈ C

∞(R, [0, 1]) satisfying

(1) for r ≥ 1: β′r(s) · s ≤ 0 for all s ∈ R, βr(s) = 1 for |s| ≤ r − 1, and βr(s) = 0 for
|s| ≥ r,

(2) for r ≤ 1: βr(s) ≤ r for all s ∈ R and suppβr ⊂ [−1, 1],
(3) limr→∞ βr(s ∓ r) =: β±∞(s) exists, where the limit is taken with respect to the C∞

topology.

We set

Kr(s, t, x) := βr(s)H(t, x) . (2.37)

We fix a point p ∈ Σ and consider the moduli space

M :=

{
(r, w) ∈ [0,∞)× C∞(R,L × R)

∣∣∣∣
w solves (2.15) for Kr

lim
s→−∞

w(s) = (p, 0), lim
s→∞

w(s) ∈ Σ

}
. (2.38)
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Claim: If there exists no leaf-wise intersection point, then M is compact. Moreover, its
boundary consists of the point (0, p, 0) only.

Assuming the Claim we prove the assertion of Theorem A. The moduli space M is the
zero-set of a Fredholm section of a Banach-space bundle over a Banach manifold. Its index
equals 1. Moreover, since by Lemma 2.12 AF = AK0 is Morse-Bott along Σ the Fredholm
section is regular at the boundary point (0, p, 0). It is well-known that a Fredholm section
can be perturbed to a transverse Fredholm section given that its zero-set is compact. Since
the Fredholm section is already transverse at the boundary point it suffices to perturb away
from the boundary. Thus, assuming the claim we obtain from M a smooth compact manifold
with boundary being the point (0, p, 0). Such a manifold does not exists. Thus, to finish the
proof it remains to show the claim.

According to Lemma 2.7 we have for (r, w) ∈ M with lims→∞w = (p′, 0)

E(w) ≤ AF
0 (p, 0)−AF

0 (p
′, 0) +

∫ ∞

−∞
||∂sKr||−ds

=

∫ ∞

−∞
||β′r(s)H||−ds

=

∫ 0

−∞
β′r(s)||H||−ds−

∫ ∞

0
β′r(s)||H||+ds

= βr(0)
(
||H||− + ||H||+

)

≤ ||H|| .

(2.39)

Moreover, if r = 0 in the above then E(w) = AF
0 (p, 0) − AF

0 (p
′, 0) = 0 thus w is constant

and therefore w(s) = (p, 0) for all s ∈ R. In particular, for r = 0 the only solution in M is
w(s) = (p, 0). Finally, since AF

0 (p, 0) = AF
0 (p

′, 0) = 0 the above computation implies

− ||H|| ≤ AKr(w(s)) ≤ ||H|| ∀s ∈ R .

Since we have uniform action bounds we know by Theorem 2.9 that the sequence wn converges
(after choosing a subsequence) to some solution v of the gradient flow equation. In case that
v(+∞) 6∈ Σ (the other case is analogous) we choose an open set U ⊂ L × R containing only
the constant critical points. Let sn be the first time so that wn(σn) 6∈ U , i.e. the first exit time.
This is well-defined for large enough n since v(+∞) 6∈ Σ. Now consider the reparametrised
sequence un := σn ∗ wn := wn(· + σn). By C∞

loc compactness the sequence un converges to u
(after choice of a subsequence). Then u is a non-constant gradient flowline since u(0) ∈ ∂U
and u(−∞) = (p, 0) using again that Σ is Morse-Bott, see Lemma 2.12. Thus, one of the
following has to exist

(1) a non-constant gradient flow line v of AF
0 with one asymptotic end being (p, 0),

(2) a gradient flow line v of AF
β∞
±

H , where β∞± is as above.

Moreover, E(v) ≤ lim supE(wn) ≤ ||H|| < ℘(Σ, α). In the first case the sequence rn con-
verges, whereas in the second case rn → ∞. If there exists no leaf-wise intersection points,
then the second case cannot occur since otherwise one asymptotic end of v is a critical point
of AF

H which gives a leaf-wise intersection point according to Proposition 2.4.
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In the first case not both asymptotic ends of v can be of the form (q, 0) ∈ CritAF
0 for

some q ∈ Σ since otherwise E(v) = 0 according to Lemma 2.7. Hence the gradient flow line
would be constant. Therefore, one asymptotic end of v is of the form (γ, η) where γ is a Reeb
orbit (contractible in M) of period η 6= 0. Thus, |η| = |AF

0 (γ, η)| = E(v) < ℘(Σ, α), which
contradicts the definition of ℘(Σ, α). This finishes the proof. �

Lemma 2.13. For any Hamiltonian function H : S1 ×M −→ R such that φ = φH the leaf-
wise intersection point found in Theorem A can be completed to a loop γ by first following
the flow of φtH and then the Reeb flow in such a way that γ is contractible in M .

Proof. From the previous proof it follows immediately that for the chosen Hamiltonian
function H the leaf-wise intersection point x = u(0), where (u, η) ∈ CritAF

H , can be completed
to a contractible loop γ. We observe that γ(t) = φtH+ηF (x) is a 1-periodic orbit of the
Hamiltonian function H + ηF . If K is another Hamiltonian function with φ = φK , then
H + ηF and K + ηF have the same time-1-maps φH+ηF = φK+ηF . Moreover, it follows
from the existence of at least one contractible periodic orbit for the time-1-map of the flow
φ−t
H+ηF ◦φtK+ηF that the loop φtH+ηF (x) is contractible if and only if φtK+ηF (x) is contractible.

The existence of a contractible periodic orbit for φ−t
H+ηF ◦ φtK+ηF follows from Floer’s proof

of the Arnold conjecture [Flo88a].
�

2.2. The perturbed Rabinowitz action functional is generically Morse. We set

H := {H ∈ C∞(S1 ×M) | H(t, ·) = 0 ∀t ∈ [0, 12 ]} . (2.40)

The specific time support of functions H ∈ H is crucial in the proof of Proposition 2.4.
Fortunately, the set H still generates Ham(M,ω), see Lemma 2.3. Moreover, it is large
enough so that the perturbed Rabinowitz action functional is generically Morse.

Theorem 2.14. For a generic H ∈ H the perturbed Rabinowitz action functional AF
H is

Morse.

Proof. The proof is postponed to the appendix A. �

Remark 2.15. It is straight forward to prove that AF
H is Morse if one does not insist that

H has time support in [12 , 1], see [CFP08]. The proof of the genericity of the Morse property
follows a standard scheme once it is shown that a certain linear operator is surjective. This
operator is composed out of two summands. One is the Hessian of AF

H and the other comes
from the variation in H. Without restrictions on the time support surjectivity follows essen-
tially directly from examining the second summand. In the situation of this paper this fails
and we crucially use the Hessian.

2.3. Rabinowitz Floer homology. The definition of Floer homology HF(AF
H) proceeds as

usual. We choose an s-independentH : S1×M −→ R. In addition, we require that H(t, ·) = 0
for all t ∈ [0, 12 ]. Moreover, we assume that the perturbed Rabinowitz action functional AF

H

is Morse. Then we define the Z/2 vector space

CF(AF
H) :=

{
ξ =

∑

c∈CritAF
H

ξcc | ξc ∈ Z/2, #{c | ξc 6= 0,AF
H(c) ≥ κ} <∞ ∀κ ∈ R

}
(2.41)

and the moduli space

M(c−, c+) :=
{
w | w solves the gradient flow equation (2.15), lim

s→±∞
= c±

}
/R . (2.42)
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Transversality for the moduli spaces M(c−, c+) can be achieved by abstract perturbation
theory. For example, one can use the theory of polyfolds by Hofer-Wysocki-Zehnder. In
fact, since there are no automorphism groups acting, the framework of M -polyfolds [HWZ07,
HWZ09] is sufficient to achieve transversality. Indeed, the space of broken trajectories is
an M -polyfold and the gradient flow equation is a Fredholm section into an M -polybundle.
The moduli space M(c−, c+) is the zero set of this Fredholm section. Using the abstract
perturbation theory developed in [HWZ09] then achieves transversality.

It also is conceivable that M(c−, c+) is smooth for a generic choice of an S1-family J(t, ·)
of compatible almost complex structures similarly as in the work of [FHS95].

By abuse of notation the smooth manifold obtained by perturbing the gradient flow equa-
tion will again be denoted by M(c−, c+). We set n(c−, c+) to be the Z/2-number of elements
in the zero-dimensional components of M(c−, c+). Then the linear map defined on generators
by

∂ : CF(AF
H) −→ CF(AF

H)

c 7→
∑

d

n(c, d)d (2.43)

satisfies ∂2 = 0. We set HF(AF
H) := H(CF(AF

H), ∂).

Theorem 2.16. If H is such that AF
H is a Morse function then

HF(AF
H) ∼= RFH(M,Σ) . (2.44)

Proof. We choose an s-dependent homotopy from H to 0. Because of Theorem 2.9 the usual
continuation homomorphisms are well-defined and isomorphisms. We conclude

HF(AF
H) ∼= HF(AF

0 ) = RFH(M,Σ) . (2.45)
�

2.4. Proof of Theorem C. Theorem C from the introduction is the following corollary of
Theorem 2.16.

Corollary 2.17. If RFH(M,Σ) 6= 0, then there exists a leaf-wise intersection point for any

φ ∈ Hamc(M,ω).

Proof. We assume by contradiction that there exists no leaf-wise intersection points. In
particular, by Proposition 2.4 CritAF

H = ∅ and thus AF
H is Morse with 0 = HF(AF

H) ∼=
RFH(M,Σ). This contradiction finishes the proof. �

2.5. Local Rabinowitz Floer homology. In the following we assume that φH ∈ Hamc(M,ω)
is chosen so that AF

H is Morse. For ||H|| < ℘(Σ, α) we define

Critloc(A
F
H) :=

{
(u, η) ∈ CritAF

H | u is contractible in M, −||H||+ ≤ AF
H(u, η) ≤ ||H||−

}
.

We note that the set Critloc(A
F
H) is finite. This follows from the Arzela-Ascoli theorem since

the Lagrange multiplier η is uniformly bounded according to Lemma 2.11. We define the
finite dimensional Z/2 vector space

CFloc(A
F
H) := Critloc(A

F
H)⊗ Z/2 . (2.46)

(CFloc(A
F
H), ∂loc) is a differential complex since the action along gradient flow lines is decreas-

ing. Define local Rabinowitz Floer homology by HFloc(A
F
H) := H(CFloc(A

F
H), ∂loc).
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Definition 2.18. We abbreviate the number of leaf-wise intersection points of φH ∈ Hamc(M,ω)
by νleaf(φH).

Lemma 2.19. If AF
H is Morse and ||H|| < ℘(Σ, α) the inequalities

νleaf(φH) ≥ dimCFloc(A
F
H) ≥ dimHFloc(A

F
H) . (2.47)

hold.

Proof. The second inequality is obvious. To prove the first inequality we point out that
two critical points (u, η) 6= (u′, η′) ∈ Crit(AF

H) can give rise to the same leaf-wise intersection

point only if the underlying leaf of the Reeb flow is closed. Indeed, if u(12 ) = u′(12) then

according to Proposition 2.4 we know that u(1) = φH(u(12 )) = φH(u′(12)) = u′(1). Trivially,
u(1) = u(0) = u′(0) = u′(1). This is illustrated in figure 1. The map u would be following
the solid line, whereas the map u′ would follow the solid arc and the dotted part of the Reeb
orbit.

u(12)

Reeb orbit

u(0)

Σ

Figure 1.

We denote by (u|[0, 1
2
])
− the path u|[0, 1

2
] traversed in the opposite direction. Then, the map

γ := u′|[0, 1
2
]#(u|[0, 1

2
])
− (2.48)

is a closed loop in Σ which (up to reparametrization) is a non-trivial Reeb orbit. The loop
γ is contractible in M since γ is homotopic to the loop u′#u− which is the concatenation of
two contractible loops and thus contractible. Next, we compute using u|[ 1

2
,1] = u′|[ 1

2
,1]

∣∣AF
H(u, η) −AF

H(u′, η′)
∣∣ =

∣∣∣∣∣∣
−

∫ 1

2

0
u∗α−

∫ 1

1

2

u∗λ− η

∫ 1

2

0
ρ(t)G(u(t))︸ ︷︷ ︸

=0

dt−

∫ 1

1

2

H(t, u(t))dt

−



∫ 1

2

0
(u′)∗α−

∫ 1

1

2

(u′)∗λ− η′
∫ 1

2

0
ρ(t)G(u′(t))︸ ︷︷ ︸

=0

dt−

∫ 1

1

2

H(t, u′(t))dt



∣∣∣∣∣∣

=

∣∣∣∣∣

∫ 1

1

2

(u′)∗α−

∫ 1

1

2

u∗α

∣∣∣∣∣

=

∣∣∣∣
∫

S1

γ∗α

∣∣∣∣ ≥ ℘(Σ, α) > ||H||

(2.49)
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If we assume that (u, η) 6= (u′, η′) ∈ Critloc(A
F
H) give rise to the same leaf-wise intersection,

then by definition of Critloc(A
F
H) we have

||H|| = ||H||+ + ||H||− ≥
∣∣AF

H(u, η) −AF
H(u′, η′)

∣∣ > ||H|| . (2.50)

This contradiction finishes the proof. �

2.6. Proof of Theorem B. Theorem B from the introduction follows from Theorem 2.14,
Lemma 2.19, and the following proposition.

Proposition 2.20. If φH ∈ Hamc(M,ω) satisfies ||φH || < ℘(Σ, α) and if AF
H is Morse, then

there exists an injective homomorphism

θ : H(Σ;Z/2) −→ HFloc(A
F
H) . (2.51)

Proof. We first observe that

H(Σ;Z/2) ∼= HFloc(A
F
0 ) . (2.52)

Indeed, this follows from the fact that locally around the action value 0 the Rabinowitz
action functional AF

0 is Morse-Bott with critical manifold Σ, on which the action functional
vanishes. Since the functional only has one critical value the complex of cascades, see [Fra04],
computing the Morse-Bott homology HFloc(A

F
0 ) equals the Morse complex of the critical

manifold Σ. Let θ be the continuation homomorphism θ : HFloc(A
F
0 ) −→ HFloc(A

F
H) in local

Floer homology. With formula (2.17) and ||H||+ + ||H||− = ||H|| < ℘(Σ, α) one checks via
an energy-action estimate that θ is well-defined when using the homotopy β+∞(s)H from the
proof of Theorem A, see equation (2.37). The same energy-action estimate shows that the
reverse continuation homomorphism ζ : HFloc(A

F
H) −→ HFloc(A

F
0 ) is well-defined via the

homotopy β−∞(s)H. Applying a homotopy of homotopies βr(s)H as in the proof of Theorem
A shows that

ζ ◦ θ = id : HFloc(A
F
0 ) −→ HFloc(A

F
0 ) , (2.53)

namely no breaking along non-trivial Reeb occurs during the homotopy. Hence θ is injective.
�

Appendix A. AF
H is generically Morse

In this appendix we prove Theorem 2.14.

A.1. Preparations. The proof of the genericity of the Morse property follows a standard
scheme, that is, once it is shown that a certain linear operator is surjective the theorem
follows from Sard-Smale’s theorem. Unfortunately, the standard approach by linearizing the
functional using some connection leads to finding solutions of a rather complicated ODE on
the manifold M . To circumvent this we first transform the problem and then in the end
obtain a linear ODE in a vector space.

First, let us recall the definition of the perturbed Rabinowitz action functional

AF
H : L × R −→ R

(v, η) 7→ −

∫ 1

0
λ(v(t))[∂tv]−

∫ 1

0
H(t, v)dt − η

∫ 1

0
F (t, v)dt

(A.1)
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where from now on L ≡ W 1,2(S1,M) is the (completed) loop space of M . For convenience
we abbreviate

F : L −→ R

v 7→

∫ 1

0
F (t, v)dt .

(A.2)

and

AH(v) := −

∫ 1

0
λ(v(t))[∂tv]−

∫ 1

0
H(t, v)dt . (A.3)

Thus, AF
H(v, η) = AH(v)− ηF(v). We note that AF

H(v, η) = Aη0F+H(v) + (η0 − η)F(v), and
therefore

dAF
H(v, η)[v̂, η̂] = dAη0F+H(v)[v̂]− η̂F(v) + (η0 − η)dF(v)[v̂] (A.4)

where v̂ ∈ Γ1,2(v∗TM), the space of W 1,2 vector fields along v, and η̂ ∈ R. Hence at a critical
point x0 = (v0, η0) ∈ CritAF

H the Hessian equals

HAF
H
(x0)[(v̂1, η̂1), (v̂2, η̂2)] = HAη0F+H

(v0)[v̂1, v̂2]− η̂1dF(v0)[v̂2]− η̂2dF(v0)[v̂1] . (A.5)

For a function P : [0, 1] ×M −→ R and corresponding φ1P ∈ Ham(M,ω) we define

LP := {w ∈W 1,2([0, 1],M) | w(0) = φ1P (w(1))} , (A.6)

the twisted loop space, and introduce the diffeomorphism ΦP : LP −→ L

ΦP (w)(t) = φtP (w(t)) . (A.7)

For a fixed critical point x0 = (v0, η0) of A
F
H we use this diffeomorphism to pull back AF

H

ÃF
η0,H

= (Φη0F+H × idR)
∗AF

H : Lη0F+H ×R −→ R . (A.8)

We set w0 := Φ−1
η0F+H ◦ v0, thus w0 =const. Then using

(
Φ∗
HdAH

)
(w)[ŵ] =

∫
ω(∂tw, ŵ) we

obtain

H eAF
η0,H

(w0, η0)[(ŵ1, η̂1), (ŵ2, η̂2)] =

∫ 1

0
ω(∂tŵ1, ŵ2)dt−η̂1dF̃(w0)[ŵ2]−η̂2dF̃(w0)[ŵ1] . (A.9)

where F̃ = F ◦ Φη0F+H . Using the special form of F (see equation (2.2)) and H ∈ H (see
equation (2.40)) we compute

F̃(w) =

∫ 1

0
F (t, φtη0F+H(w))dt =

∫ 1
2

0
F (t, φtη0F+H(w))dt

=

∫ 1
2

0
F (t, φtη0F (w))dt =

∫ 1
2

0
F (t, w)dt

=

∫ 1

0
F (t, w)dt

(A.10)

Thus, the Hessian of ÃF
η0,H

simplifies as follows (after integrating by parts)

H eAF
η0,H

(w0, η0)[(ŵ1, η̂1), (ŵ2, η̂2)]

=

∫ 1

0
ω(∂tŵ1, ŵ2)dt− η̂1

∫ 1

0
dF (t, w0)[ŵ2]− η̂2

∫ 1

0
dF (t, w0)[ŵ1]

(A.11)
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A.2. The linearized operator. We denote by Hk = {H ∈ Ck(S1 ×M) | H(t, ·) = 0 ∀t ∈
[0, 12 ]}. Moreover, for w ∈ LH (see equation (A.6) for the definition) we define the bundle
EH −→ LH by

(EH)w := L2([0, 1], w∗TM) . (A.12)

Definition A.1. Let (v0, η0) be a critical point of AF
H and (w0, η0) the corresponding critical

point of ÃF
η0,H

, that is, defined by the equation v0 = Φη0F+H(w0). Then we define the linear
operator

L(w0,η0,H) : (Tw0
Lη0F+H)×R×H −→ (Eη0F+H)∨ ×R (A.13)

via the pairing with (ŵ2, η̂2) ∈ (Eη0F+H)× R

〈L(w0,η0,H)[ŵ1, η̂1, Ĥ], (ŵ2, η̂2)〉 := H eAF
η0,H

(w0, η0)[(ŵ1, η̂1), (ŵ2, η̂2)]

+

∫ 1

0
d((Φη0F+H)∗Ĥ)(t, w0)[ŵ2(t)]dt

(A.14)

Proposition A.2. The operator L(w0,η0,H) is surjective. In fact, L(w0,η0,H) is surjective when

restricted to the space

V := {(ŵ, η̂, Ĥ) ∈ (Tw0
Lη0F+H)× R×H | ŵ(12) = 0} . (A.15)

Remark A.3. The additional assertion of the surjectivity of L(w0,η0,H)|V is not used in the
current article but will prove useful in the future. Since it added only two lines we decided
to include it here.

Proof. The L2-Hessian is a self-adjoint Fredholm operator. Thus, the operator L(w0,η0,H)

has closed image. Therefore, it suffices to prove that the annihilator of the image of L(w0,η0,H)

vanishes. Let (ŵ2, η̂2) be in the annihilator of the image of L(w0,η0,H), that is

〈L(w0,η0,H)[ŵ1, η̂1, Ĥ ], (ŵ2, η̂2)〉 = 0 (A.16)

for all (ŵ1, η̂1, Ĥ) ∈ (Tw0
Lη0F+H)×R×H. This is equivalent to the following two equations:

H eAF
η0,H

(w0, η0)[(ŵ1, η̂1), (ŵ2, η̂2)] = 0 ∀(ŵ1, η̂1) ∈ (Tw0
Lη0F+H)× R (A.17)

and ∫ 1

0
dĤt(φ

t
η0F+H(w0))[dφ

t
η0F+H(w0)[ŵ2]] = 0 ∀Ĥ ∈ H (A.18)

Since the Hessian H eAF
η0,H

is a self-adjoint operator, equations (A.11) and (A.17) imply by

elliptic regularity that ŵ2 ∈ Ck+1([0, 1],M) and satisfies the equation

∂tŵ2 − η̂2XF (t, w0) = 0 (A.19)

and the linearized boundary condition

ŵ2(0) = dφ1η0F+H(w0)[ŵ2(1)] . (A.20)

In fact, when the Hessian is restricted to V then equation (A.19) holds for all t 6= 1
2 , since the

Hessian is a local operator. Thus, by continuity, equation (A.19) holds for all t in any case.
From equation (A.18) we deduce that

ŵ2(t) = 0 ∀t ∈ [12 , 1] . (A.21)

Using F (t, x) = ρ(t)G(x) we rewrite equation (A.19)

∂tŵ2 − η̂2ρ(t)XG(w0) = 0 . (A.22)
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This is a linear ODE in the vector space Tw0
M which we can solve

ŵ2(t) = ŵ2(0) + η̂2

(∫ t

0
ρ(τ)dt

)
XG(w0) . (A.23)

We recall (see equation (2.2)) that F (t, x) = ρ(t)G(x) where
∫ t

0 ρ(t)dt = 1 for all t ∈ [12 , 1].

Combining this with equation (A.21) we conclude for t ≥ 1
2

0 = ŵ2(t) = ŵ2(0) + η̂2XG(w0) . (A.24)

Combining equations (A.20) and (A.21) at t = 1 we derive ŵ2(0) = 0. Hence, by equation
(A.24) we have

η̂2XG(w0) = 0 . (A.25)

Since (w0, η0) comes from a critical point (v0, η0) of A
F
H we know G(v(0)) = G(w0) = 0, and

therefore, XG(w0) 6= 0 since 0 was assumed to be a regular of G. In particular,

η̂2 = 0 (A.26)

Equations (A.23) and (A.26) immediately imply

ŵ2(t) = 0 ∀t ∈ [0, 1] . (A.27)

Therefore, the annihilator of the image of Lw0,η0,H vanishes and thus Lw0,η0,H is surjective. �

A.3. Proof of Theorem 2.14. We recall that L = W 1,2(S1,M) and Hk = {H ∈ Ck(S1 ×
M) | H(t, ·) = 0 ∀t ∈ [0, 12 ]}. We define the Banach space bundle E −→ L by Ev =

L2(S1, v∗TM). We consider the section S : L ×R×Hk −→ E∨ ×R given by the differential
of the Rabinowitz action functional AF

H

S(v, η,H) := dAF
H(v, η) . (A.28)

where the perturbation H ∈ Hk is considered an additional variable. Its vertical differential
DS : T(v0,η0,H)L × R×Hk −→ E∨

(v0,η0,H) at (v0, η0,H) ∈ S−1(0) is

DS(v0,η0,H)[(v̂, η̂, Ĥ)] = HAF
H
(v0, η0)

[
(v̂, η̂, Ĥ) ; •

]
+

∫ 1

0
Ĥ(t, v0)dt (A.29)

Since the pull-back of DS under the diffeomorphism Φη0F+H × idR × idHk is the operator
L(w0,η0,H) in Proposition A.2, the operator DS is surjective. Thus, by the implicit function
theorem the universal moduli space

M := S−1(0) (A.30)

is a smooth Banach manifold. We consider the projection Π : M −→ Hk. Then the AF
H

is Morse if and only if H is a regular value of Π, which by the theorem of Sard-Smale form
a generic set (for k large enough). Moreover, the Morse condition is Ck-open. Thus, for
functions in an open and dense subset of Hk the Rabinowitz action functional is Morse.
Taking the intersection of all k concludes the proof of Theorem 2.14. �
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