328 research outputs found

    Incompatibility of a comoving Ly-alpha forest with supernova-Ia luminosity distances

    Full text link
    Recently Perlmutter et al. suggested a positive value of Einstein's cosmological constant Lambda on the basis of luminosity distances from type-Ia supernovae. However, Lambda world models had earlier been proposed by Hoell & Priester and Liebscher et al. on the basis of quasar absorption-line data. Employing more general repulsive fluids ("dark energy") encompassing the Lambda component we quantitatively compare both approaches with each other. Fitting the SN-data by a minimum-component model consisting of dark energy + dust yields a closed universe with a large amount of dust exceeding the baryonic content constrained by big-bang nucleosynthesis. The nature of the dark energy is hardly constrained. Only when enforcing a flat universe there is a clear tendency to a dark-energy Lambda fluid and the `canonical' value Omega_M = 0.3 for dust. Conversely, fitting the quasar-data by a minimum-component model yields a sharply defined, slightly closed model with a low dust density ruling out significant pressureless dark matter. The dark-energy component obtains an equation-of-state P = -0.96 epsilon close to that of a Lambda-fluid. Omega_M = 0.3 or a precisely flat spatial geometry are inconsistent with minimum-component models. It is found that quasar and supernova data sets cannot be reconciled with each other via (repulsive ideal fluid+dust+radiation)-world models. Compatibility could be reached by drastic expansion of the parameter space with at least two exotic fluids added to dust and radiation as world constituents. If considering such solutions as far-fetched one has to conclude that the quasar absorption line and the SN-Ia constraints are incompatible.Comment: 8 pages, 4 figures, latex, accepted for publication in A&

    The Electrostatics of Einstein's Unified Field Theory

    Full text link
    When sources are added at their right-hand sides, and g_{(ik)} is a priori assumed to be the metric, the equations of Einstein's Hermitian theory of relativity were shown to allow for an exact solution that describes the general electrostatic field of n point charges. Moreover, the injunction of spherical symmetry of g_{(ik)} in the infinitesimal neighbourhood of each of the charges was proved to yield the equilibrium conditions of the n charges in keeping with ordinary electrostatics. The tensor g_{(ik)}, however, cannot be the metric of the theory, since it enters neither the eikonal equation nor the equation of motion of uncharged test particles. A physically correct metric that rules both the behaviour of wave fronts and of uncharged matter is the one indicated by H\'ely. In the present paper it is shown how the electrostatic solution predicts the structure of the n charged particles and their mutual positions of electrostatic equilibrium when H\'ely's physically correct metric is adopted.Comment: 15 pages. Misprints corrected. To appear in General Relativity and Gravitatio

    Assessing the stress-transfer capability of mineral impregnated PBO yarns in a limestone calcined clay cement-based (LC3) matrix

    Get PDF
    Technical textiles made of poly(p-phenylene-2,6-benzobisoxazole) (PBO) represent attractive candidates for strengthening and repairing damaged concrete and masonry structures, due to the outstanding durability and mechanical performance of PBO fibres. Similarly to their aramid counterparts, PBO fibres have proved very effective against dynamic and impact loading. In this contribution, the pull-out behaviour of PBO multifilament yarns embedded into a blended cement-based matrix is investigated, with particular reference to its stress-transfer capacity. In addition to the as-received PBO yarns, impregnation with a cement-based suspension, which can fully preserve the inorganic nature of the composite system, is also evaluated. Experimental results are presented and interpreted using a one-dimensional mechanical model. The findings indicate that mineral impregnation of the yarns provides a 40% increase in the stress-transfer capacity with the matrix, corresponding to a halving of the anchoring length. These performance gains are also supported by a transition in the failure mechanism which shifts from friction-based pull-out to fibre rupture

    Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation

    Get PDF

    Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation

    Get PDF

    The physical meaning of the "boost-rotation symmetric" solutions within the general interpretation of Einstein's theory of gravitation

    Full text link
    The answer to the question, what physical meaning should be attributed to the so-called boost-rotation symmetric exact solutions to the field equations of general relativity, is provided within the general interpretation scheme for the ``theories of relativity'', based on group theoretical arguments, and set forth by Erich Kretschmann already in the year 1917.Comment: 9 pages, 1 figure; text to appear in General Relativity and Gravitatio

    Revisiting Weyl's calculation of the gravitational pull in Bach's two-body solution

    Get PDF
    When the mass of one of the two bodies tends to zero, Weyl's definition of the gravitational force in an axially symmetric, static two-body solution can be given an invariant formulation in terms of a force four-vector. The norm of this force is calculated for Bach's two-body solution, that is known to be in one-to-one correspondence with Schwarzschild's original solution when one of the two masses l, l' is made to vanish. In the limit when, say, l' goes to zero, the norm of the force divided by l' and calculated at the position of the vanishing mass is found to coincide with the norm of the acceleration of a test body kept at rest in Schwarzschild's field. Both norms happen thus to grow without limit when the test body (respectively the vanishing mass l') is kept at rest in a position closer and closer to Schwarzschild's two-surface.Comment: 11 pages, 2 figures. Text to appear in Classical and Quantum Gravit

    A Projective Interpretation of Some Doubly Special Relativity Theories

    Full text link
    A class of projective actions of the orthogonal group on the projective space is being studied. It is shown that the Fock--Lorentz, and Magueijo--Smolin transformations known as Doubly Special Relativity are such transformations. The formalism easily lead to new type transformations
    • …
    corecore