1,820 research outputs found

    Absence of cardiomyocyte differentiation following transplantation of adult cardiac-resident Sca-1+ cells into infarcted mouse hearts

    Get PDF
    Although several lines of evidence suggest that the glycosyl phosphatidylinositol-anchored cell surface protein Sca-1 marks cardiac-resident stem cells, a critical analysis of the literature raises some concerns regarding their cardiomyogenic potential.1 Here, isolated adult cardiac-resident Sca-1+ cells were engrafted into infarcted hearts and monitored for cardiomyogenic differentiation. Donor cells were prepared from ACT-EGFP; MHC-nLAC double-transgenic mice ([C57/Bl6J x DBA/2J]F1 genetic background; all procedures followed were in accordance with Institutional Guidelines). The ACT-EGFP transgene targets ubiquitous expression of an enhanced green fluorescent protein reporter, and the MHC-nLAC transgene targets cardiomyocyte-restricted expression of a nuclear-localized β-galactosidase reporter. Donor cell survival was monitored via EGFP fluorescence, while cardiomyogenic differentiation was monitored by reacting with the chromogenic β-galactosidase substrate 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-GAL), which gives rise to a blue product.2 Double-transgenic hearts were dispersed with Blendzyme and the resulting cells reacted with an APC-conjugated anti-Sca-1 antibody and a PE-conjugated cocktail of antibodies recognizing hematopoietic lineage markers.3 Sca-1+, EGFP+, lineage- cells were then isolated via fluorescence-activated cell sorting (FACS; characterization of the donor cells is provided in Figure 1A), and 100,000 cells were injected into the infarct border zone of non-transgenic [C57/Bl6J x DBA/2J]F1 mice immediately following permanent coronary artery occlusion

    Differential patterns of PMN-elastase and type III procollagen peptide in knee joint effusions due to acute and chronic sports injuries

    Get PDF
    In 38 traumatic knee joint effusions the proteolytic enzyme PMN-elastase (PMN-E) and the repair marker procollagen III aminoterminal peptide (PIIINP) were determined. According to the period between trauma and first aspiration of the effusion, the patients were divided into 3 groups. Group I (17 patients; period between trauma and first aspiration not longer than 72 hours) showed high concentrations of PMN-E (up to 5400 ng/ml) and low concentrations of PIIINP (<13 U/ml). Group II (11 patients; aspiration within 4 to 14 days) had mean PMN-E and PIIINP concentrations of 125.6 ng/ml and 52.1 U/ ml, respectively. In group III (10 patients, aspiration after 14 days) mean PMN-E concentration was 123.8 ng/ml and mean PIIINP concentration was 63.4 U/ml. Graphic depiction of PMN-E and PIIINP levels in each individual sample as a function of time between trauma and fluid collection revealed highly increasing PMN-E levels during the first 24 posttraumatic hours, followed by rapidly decreasing levels within 72 hours post trauma, and no change after the 4th posttraumatic day. In contrast, PIIINP increased continuously up to the first posttraumatic week and stayed at high levels up to 90 days (end of the observation period). The differential patterns of PMN-E and PIIINP concentration in knee joint effusions may be useful in estimating the period between trauma and first treatment (aspiration of effusion) and should, therefore, be helpful in detecting degenerative lesions, which seem to be characterized by low PMN-E concomitantly with high PIIINP levels

    Effect of heptavalent pneumococcal conjugate vaccination on invasive pneumococcal disease in preterm born infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence for protection of preterm born infants from invasive pneumococcal disease (IPD) by 7-valent pneumococcal conjugate vaccination (PCV7) is relatively sparse. Data from randomized trials is based on relatively small numbers of preterm born children.</p> <p>Methods</p> <p>We report data from active prospective surveillance of IPD in children in Germany. The cohorts of preterm born children in 2000 and 2007 and the respective whole birth cohorts are compared regarding occurrence of IPD.</p> <p>Results</p> <p>After introduction of PCV7 we observed a reduction in the rate of IPD in preterm born infants comparing the 2000 and 2007 birth cohort. The rate of IPD among the whole birth cohorts was reduced from 15.0 to 8.5 notifications per 100,000 (<it>P </it>< .001). The impact among the preterm birth cohort was comparable: A reduction in notification rate from 26.1 to 16.7 per 100,000 comparing the 2000 with the 2007 preterm birth cohort (<it>P </it>= .39). Preterm born infants with IPD were either unvaccinated or vaccinated delayed or incomplete.</p> <p>Conclusions</p> <p>This adds to evidence that PCV7 also protects preterm born infants effectively from IPD. Preterm born infants should receive pneumococcal vaccination according to their chronological age.</p

    Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.

    Get PDF
    BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Влияние моделей обратного тока насыщения диода на выходные характеристики двух-диодной модели солнечной батареи в среде Matlab Simulink

    Get PDF
    В работе проводилось моделирование солнечной батареи в программном обеспечении MATLAB Simulink. Изучались выходные параметры солнечной батареи в зависимости от модели обратного тока насыщения диода. Полученными результатами являются вольт-амперные и вольт-ваттные характеристики, показывающие влияние модели обратного тока насыщения диода на выходные параметры солнечной батареи.The work was carried out modeling of the solar battery in the software MATLAB Simulink. The output parameters of the solar battery were studied depending on the model of the reverse current saturation of the diode. The results are current-voltage and voltage-watt characteristics, showing the influence of the model of the inverse diode saturation current on the output parameters of the solar battery

    Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Get PDF
    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
    corecore