537 research outputs found
The contribution of cause-effect link to representing the core of scientific paper—The role of Semantic Link Network
The Semantic Link Network is a general semantic model for modeling the structure and the evolution of complex systems. Various semantic links play different roles in rendering the semantics of complex system. One of the basic semantic links represents cause-effect relation, which plays an important role in representation and understanding. This paper verifies the role of the Semantic Link Network in representing the core of text by investigating the contribution of cause-effect link to representing the core of scientific papers. Research carries out with the following steps: (1) Two propositions on the contribution of cause-effect link in rendering the core of paper are proposed and verified through a statistical survey, which shows that the sentences on cause-effect links cover about 65% of key words within each paper on average. (2) An algorithm based on syntactic patterns is designed for automatically extracting cause-effect link from scientific papers, which recalls about 70% of manually annotated cause-effect links on average, indicating that the result adapts to the scale of data sets. (3) The effects of cause-effect link on four schemes of incorporating cause-effect link into the existing instances of the Semantic Link Network for enhancing the summarization of scientific papers are investigated. The experiments show that the quality of the summaries is significantly improved, which verifies the role of semantic links. The significance of this research lies in two aspects: (1) it verifies that the Semantic Link Network connects the important concepts to render the core of text; and, (2) it provides an evidence for realizing content services such as summarization, recommendation and question answering based on the Semantic Link Network, and it can inspire relevant research on content computing
Production of 1,3-propanediol from glycerol by engineered
1,3-Propanediol (1,3-PD) has versatile applications in polymers, cosmetics, foods and medicines. In order to consolidate the functions of glycerol dehydratase gene dhaB and 1,3-propanediol oxidoreductase gene dhaT and produce 1,3-PD from glycerol, the genes dhaB and dhaT from Klebsiellapneumoniae were inserted into a co-expression vector pACYCDuet-1 synchronously and the recombinant strain E. coli/pACYCDuet-dhaB-dhaT was obtained. Both enzymes were functionally coexpressed in E. coli at the presence of the selective pressure and the addition of the IPTG. The specificenzyme activity of DHAB and DHAT were 8.3 and 6.2 U/mg, respectively. When cultivated at 37°C for 30 h, the recombinant microorganisms produced 1,3-PD of 11.3 g with the consumption of 40 g glycerol per liter. The production of 1,3-PD by the strain E. coli/pACYCDuet-dhaB-dhaT was about 13-fold higher than the recombinant E. coli harboring the gene dhaB
An adaptable and personalised e-learning system based on free web resources
A personalised and adaptive E-Learning system architecture
is developed to provide a comprehensive learning environment for learners who cannot follow a conventional programme of study. The system extracts information from freely available resources on the Web, and taking into consideration the learners' background and requirements to design modules and a planner system to facilitate the learning process. The
process is supported by the development of an ontology to optimise the in-formation extraction process. An application in the computer science field is used to evaluate the proposed system based on the IEEE/ACM Computing curriculum
Prospects for gravitational-wave observations of neutron-star tidal disruption in neutron-star/black-hole binaries
For an inspiraling neutron-star/black-hole binary (NS/BH), we estimate the
gravity-wave frequency f_td at the onset of NS tidal disruption. We model the
NS as a tidally distorted, homogeneous, Newtonian ellipsoid on a circular,
equatorial geodesic around a Kerr BH. We find that f_td depends strongly on the
NS radius R, and estimate that LIGO-II (ca. 2006-2008) might measure R to 15%
precision at 140 Mpc (about 1 event/yr under current estimates). This suggests
that LIGO-II might extract valuable information about the NS equation of state
from tidal-disruption waves.Comment: RevTeX, 4 pages, 2 EPS figures. Revised slightly, corrected typo
A Semantic Grid Oriented to E-Tourism
With increasing complexity of tourism business models and tasks, there is a
clear need of the next generation e-Tourism infrastructure to support flexible
automation, integration, computation, storage, and collaboration. Currently
several enabling technologies such as semantic Web, Web service, agent and grid
computing have been applied in the different e-Tourism applications, however
there is no a unified framework to be able to integrate all of them. So this
paper presents a promising e-Tourism framework based on emerging semantic grid,
in which a number of key design issues are discussed including architecture,
ontologies structure, semantic reconciliation, service and resource discovery,
role based authorization and intelligent agent. The paper finally provides the
implementation of the framework.Comment: 12 PAGES, 7 Figure
In-situ STEM imaging of growth and phase change of individual CuAlX precipitates in Al alloy
Age-hardening in Al alloys has been used for over a century to improve its mechanical properties. However, the lack of direct observation limits our understanding of the dynamic nature of the evolution of nanoprecipitates during age-hardening. Using in-situ (scanning) transmission electron microscopy (S/TEM) while heating an Al-Cu alloy, we were able to follow the growth of individual nanoprecipitates at atomic scale. The heat treatments carried out at 140, 160, 180 and 200 degrees C reveal a temperature dependence on the kinetics of precipitation and three kinds of interactions of nano-precipitates. These are precipitate-matrix, precipitate-dislocation, and precipitate-precipitate interactions. The diffusion of Cu and Al during these interactions, results in diffusion-controlled individual precipitate growth, an accelerated growth when interactions with dislocations occur and a size dependent precipitateprecipitate interaction: growth and shrinkage. Precipitates can grow and shrink at opposite ends at the same time resulting in an effective displacement. Furthermore, the evolution of the crystal structure within an individual nanoprecipiate, specifically the mechanism of formation of the strengthening phase,theta', during heat-treatment is elucidated by following the same precipitate through its intermediate stages for the first time using in-situ S/TEM studies
Grammar-Based Geodesics in Semantic Networks
A geodesic is the shortest path between two vertices in a connected network.
The geodesic is the kernel of various network metrics including radius,
diameter, eccentricity, closeness, and betweenness. These metrics are the
foundation of much network research and thus, have been studied extensively in
the domain of single-relational networks (both in their directed and undirected
forms). However, geodesics for single-relational networks do not translate
directly to multi-relational, or semantic networks, where vertices are
connected to one another by any number of edge labels. Here, a more
sophisticated method for calculating a geodesic is necessary. This article
presents a technique for calculating geodesics in semantic networks with a
focus on semantic networks represented according to the Resource Description
Framework (RDF). In this framework, a discrete "walker" utilizes an abstract
path description called a grammar to determine which paths to include in its
geodesic calculation. The grammar-based model forms a general framework for
studying geodesic metrics in semantic networks.Comment: First draft written in 200
- …