731 research outputs found

    Observation of light dragging in rubidium vapor cell

    Full text link
    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\bf 86}, 628 (2001)].Comment: 4 pages 4 figures, submitted to PR

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity

    Full text link
    A moving dielectric medium acts as an effective gravitational field on light. One can use media with extremely low group velocities [Lene Vestergaard Hau et al., Nature 397, 594 (1999)] to create dielectric analogs of astronomical effects on Earth. In particular, a vortex flow imprints a long-ranging topological effect on incident light and can behave like an optical black hole.Comment: Physical Review Letters (accepted

    Eyes In The Sky: Linking Satellite Oceanography And Biotelemetry To Explore Habitat Selection By Basking Sharks

    Get PDF
    Background: Satellite-based oceanographic data products are a valuable source of information on potential resource availability for marine species. Satellite oceanography data may be particularly useful in biotelemetry studies on marine species that feed at low trophic levels, such as zooplanktivorous whales, sharks, and rays. The basking shark, Cetorhinus maximus, is a well-documented zooplanktivore in the western North Atlantic, yet little is known of its movements and spatial ecology in this region. A combination of satellite tag technologies were used to describe basking shark movements with respect to concurrent satellite-observed oceanographic conditions in order to test for selection of these environmental variables. Results: Satellite-linked ‘smart’ position only transmitting tags (SPOTs, N = 10) were used to assess horizontal movements, activity space, and habitat selection, while pop-up satellite archival tags (PSATs, N = 7) were used to describe depth preferences of basking sharks during summer and fall. The duration of SPOT tracks ranged from 5 to 45 days. Basking sharks used relatively small activity spaces in three focal areas off Massachusetts: Vineyard Sound, the Great South Channel, and Cape Cod Bay. These sharks appeared to select areas with shallow bottom depths, high primary production and chlorophyll concentrations, and steep surface gradients, but significant selection for these variables was only detected between mid-August and mid-October when the sharks were primarily located in Cape Cod Bay. Conclusions: Basking sharks in the southern Gulf of Maine during summer and fall focus their activities in discrete areas likely to support high primary and secondary productivity. Habitat selection may also be influenced by mating and social activity at times, but further research is needed to differentiate these behaviors from foraging activity. Satellite-based biotelemetry and oceanography are powerful tools that together can provide valuable new insights into habitat selection patterns of highly mobile marine species

    Hamiltonian statistical mechanics

    Full text link
    A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the reference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.Comment: 8 pages, 2 figures, references adde

    The bittersweet effects of COVID-19 on mental health:Results of an online survey among a sample of the Dutch population five weeks after relaxation of lockdown restriction

    Get PDF
    Previous research shows that crises can have both negative and positive mental health effects on the population. The current study explored these effects in the context of the COVID-19 pandemic after relaxation of governmental measures. An online survey was administered among a representative sample of the Dutch population (n = 1519) in June 2020, ten weeks after the peak of COVID-19 had passed, and five weeks after restrictions were relaxed. Participants were asked about mental health, adverse events during COVID-19, and about any positive effects of the pandemic. Most participants (80%, n = 1207) reported no change in mental health since the COVID-19 pandemic. This was also the case among respondents who had experienced an adverse event. Protective factors of mental health were being male and high levels of positive mental well-being. Risk factors were emotional loneliness and the experience of adverse life events. Social loneliness was positively associated with stable mental health, stressing the importance of meaningful relationships. Note that 58% of participants reported positive effects of the pandemic, the most common of which were rest, working from home, and feeling more socially connected. In summary, 10 weeks after the start of the crisis, and 5 weeks after relaxation of the restrictions, most people remained stable during the crisis, and were even able to report positive effects

    Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: An experimental and computational analysis

    Get PDF
    The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: small cells (SCs) and large cells (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. © 2013 the American Physiological Society

    The role of inhibitory feedback for information processing in thalamocortical circuits

    Get PDF
    The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurence of spindle waves. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson {\sl et al}. on the thalamocortical loop. In a first step, we use a conductance-based neuron model to reproduce the experiment computationally. In a second step, we model the same system by using an extended Hindmarsh-Rose model, and compare the results with the conductance-based model. In the framework of both models, we investigate the influence of inhibitory feedback on the information transfer in a typical thalamocortical oscillator. We find that our extended Hindmarsh-Rose neuron model, which is computationally less costly and thus siutable for large-scale simulations, reproduces the experiment better than the conductance-based model. Further, in agreement with the experiment of Le Masson {\sl et al}., inhibitory feedback leads to stable self-sustained oscillations which mask the incoming input, and thereby reduce the information transfer significantly.Comment: 16 pages, 15eps figures included. To appear in Physical Review

    Proper time and Minkowski structure on causal graphs

    Get PDF
    For causal graphs we propose a definition of proper time which for small scales is based on the concept of volume, while for large scales the usual definition of length is applied. The scale where the change from "volume" to "length" occurs is related to the size of a dynamical clock and defines a natural cut-off for this type of clock. By changing the cut-off volume we may probe the geometry of the causal graph on different scales and therey define a continuum limit. This provides an alternative to the standard coarse graining procedures. For regular causal lattice (like e.g. the 2-dim. light-cone lattice) this concept can be proven to lead to a Minkowski structure. An illustrative example of this approach is provided by the breather solutions of the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure
    • …
    corecore