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Tobey H Curtis1,5*, Stephan I Zeeman2, Erin L Summers3, Steven X Cadrin1 and Gregory B Skomal4

Abstract

Background: Satellite-based oceanographic data products are a valuable source of information on potential
resource availability for marine species. Satellite oceanography data may be particularly useful in biotelemetry
studies on marine species that feed at low trophic levels, such as zooplanktivorous whales, sharks, and rays. The
basking shark, Cetorhinus maximus, is a well-documented zooplanktivore in the western North Atlantic, yet little is
known of its movements and spatial ecology in this region. A combination of satellite tag technologies were used
to describe basking shark movements with respect to concurrent satellite-observed oceanographic conditions in
order to test for selection of these environmental variables.

Results: Satellite-linked ‘smart’ position only transmitting tags (SPOTs, N = 10) were used to assess horizontal
movements, activity space, and habitat selection, while pop-up satellite archival tags (PSATs, N = 7) were used to
describe depth preferences of basking sharks during summer and fall. The duration of SPOT tracks ranged from 5 to
45 days. Basking sharks used relatively small activity spaces in three focal areas off Massachusetts: Vineyard Sound,
the Great South Channel, and Cape Cod Bay. These sharks appeared to select areas with shallow bottom depths,
high primary production and chlorophyll concentrations, and steep surface gradients, but significant selection for
these variables was only detected between mid-August and mid-October when the sharks were primarily located in
Cape Cod Bay.

Conclusions: Basking sharks in the southern Gulf of Maine during summer and fall focus their activities in discrete
areas likely to support high primary and secondary productivity. Habitat selection may also be influenced by mating
and social activity at times, but further research is needed to differentiate these behaviors from foraging activity.
Satellite-based biotelemetry and oceanography are powerful tools that together can provide valuable new insights
into habitat selection patterns of highly mobile marine species.

Keywords: Cetorhinus maximus, Spatial ecology, Remote sensing, Zooplankton, Great south channel, Cape cod bay

Background
An ongoing challenge in the study of highly mobile mar-
ine animals is determining how they move through their
dynamic environment and effectively locate and exploit
patchy resources, particularly for species that prey upon
pelagic zooplankton with ephemeral occurrence in space
and time [1,2]. Large-bodied secondary consumers such

as baleen whales and filter-feeding sharks and rays must
continually locate prey in sufficient densities to support
their metabolic requirements, and in many cases, supply
enough energy stores for extensive migrations: for exam-
ples, [3-6]. Baumgartner et al. [7] stated that this mode
of ‘feeding is often likened to grazing by cows…which is
essentially correct if the cow is in the desert, looking for
a small, continuously moving oasis of grass, blindfolded’.
Accordingly, species that primarily rely on zooplankton
for their survival must have well-adapted sensory sys-
tems highly-attuned to their environments and multiple
behavioral and physiological mechanisms that allow
them to locate productive habitats: for examples, [8,9].
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The zooplanktivorous basking shark (Cetorhinus maximus
Gunnerus 1765) is the second largest fish on earth,
exceeding 10 m in length. In the western North Atlan-
tic Ocean, they range from Newfoundland, Canada to
Brazil [5,10], but they have been observed most often
during spring, summer, and autumn months off the
northeastern US between Long Island, New York and
the Gulf of Maine [11-14]. Beginning in late spring,
basking sharks are frequently observed filter-feeding in
productive patches of zooplankton, primarily com-
prised of calanoid copepods [12,15]. Analysis of sight-
ings data from the Gulf of Maine and Bay of Fundy
indicate that basking sharks may seasonally shift their
distributions in relation to environmental variables
(depth, temperature, chlorophyll concentrations, circu-
lation patterns) that influence the distribution of their
copepod prey [12,16]. However, individual movement
and habitat selection patterns within these areas have
not been examined.
Satellite-based technology to track the movements of

large sharks and other fishes in their natural environ-
ment has only recently developed [17,18]. Important
insights on habitat selection, migration, population
structure, physiology, foraging strategies, and swimming
behaviors can be inferred by examining the movements
of individuals within a population [17-19]. The use
of satellite telemetry methods to track sharks expanded
rapidly over the last decade [3,18,20-22]. Basking sharks
are particularly amenable to tagging and telemetry studies,
because they are large and slow-moving in surface
waters, making them accessible to researchers. Accord-
ingly, the first satellite tracking experiment on a shark
was conducted on a basking shark [23]. A single 7-m
shark was tracked over a 17-day period off the coast of
Scotland, and its movement path was compared to sat-
ellite imagery of sea surface temperature (SST) [23,24].
More recently, several studies have deployed pop-up

satellite archival tags (PSATs) to investigate long-
term, large-scale movements and habitat use of bas-
king sharks tagged in the eastern North Atlantic
[8,25-29] and western North Atlantic [5,30]. These
studies demonstrated the ability of basking sharks to
make extensive movements (>6,000 to 9,000 km in
some individuals) away from summer feeding grounds
[5,29]. Sims et al. [8] also compared PSAT-derived
tracks of seven basking sharks to a modeled prey field
off the British Isles and showed that the sharks con-
sistently selected regions with high estimates of cope-
pod biomass. However, direct comparisons between
shark movements and concurrent environmental con-
ditions were not possible due to the large geolocation
errors associated with PSATs: for examples, [31] and
the nature of the long-term zooplankton data set that
was interpolated [8].

Investigations into more short-term or meso-scale
movement patterns of basking sharks have received lit-
tle additional study since Priede [23]. Sims and Quayle
[32] visually tracked the fine-scale movements of bask-
ing sharks in the English Channel relative to in situ
measurements of zooplankton density and small-scale
thermal fronts. These visual methods were also used to
estimate swimming speeds and threshold foraging be-
haviors, suggesting that basking sharks select and track
patches of habitat with zooplankton densities > 0.6 g m−3

[33,34]. However, samples sizes remained small and track
durations were short (<7 hours) in these studies.
No other studies have investigated meso-scale (days to

weeks) movement patterns of basking sharks using acous-
tic or satellite telemetry methods, or directly compared
these movements to near real-time habitat conditions
(for example, in situ measurements or remotely-sensed
observations); and all previous work on shorter-term
movements was conducted only in the eastern North
Atlantic [23,32-34]. Given such limited information, the
goal of this study was to track the meso-scale move-
ments of basking sharks in their summer and fall for-
aging grounds in the southern Gulf of Maine using
satellite telemetry and compare those movements to
concurrent oceanographic conditions measured by sat-
ellites. We tested the hypothesis that basking shark
habitat use in this region is non-random with respect to
a suite of remotely-sensed environmental variables. Dir-
ectly comparing the movements of multiple sharks to
concurrent habitat conditions at comparatively high
resolution is expected to provide further insights into
the environmental features to which they orient and
how they respond to changing conditions.

Results
Movements
The number of days satellite-linked ‘smart’ position
only transmitter (SPOT)-tagged sharks were tracked
ranged from 5 to 45 days (mean = 16.3 days), resulting
in a cumulative total of 163 tracking days (Table 1). A
total of 547 Argos positions (location classes 0, 1, 2,
and 3) were received. The mean (±1 SD) time interval
between position fixes was 6.9 ± 10.7 hours (median =
1.8 hours). Once the Argos positions were filtered, 328
positions remained, and the mean time interval between
positions changed to 12.2 ± 13.6 hours (median = 7.1 hours).
Total track distances varied with duration, but ranged

from 67 to 946 km (Table 1). Daily track distances
ranged from 10 to 22 km d−1 (mean = 17.0 ± 3.7 kmd−1)
(Table 1). The mean rate of movement of the sharks was
1.53 ± 1.34 kmh−1 (0.43 ± 0.37 ms−1), and 99% of observed
movement rates were less than 3.0 kmh−1 (0.83 ms−1).
During Months A (17 June to 16 July) and B (17 July to 16
August), the tracked sharks primarily used the waters of
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Vineyard Sound (shark B1 only), the Great South Channel,
and Nantucket Shoals (Figure 1a, b), while later in the
season during Months C (17 August to 16 September)
and D (17 September to 16 October), the sharks moved
into Cape Cod Bay and southern Stellwagen Bank areas
(Figure 1c, d). Movements tended to be highly localized,
with cumulative activity space (minimum convex polygon
area) in each month ranging from approximately 1,561 km2

in Month D to 13,824 km2 in Month B (Figure 1). Activity
space was even smaller during some periods. For example,
from 1 to 10 October (during Month D), basking sharks
B6, B8, B9, and B10 all focused their movements in an
area only approximately 110 km2 off the northwestern
tip of Cape Cod (Figure 2).

Monthly habitat use and selection
All basking shark movements were restricted to contin-
ental shelf waters (<200 m) (Figure 2). Mean monthly
bottom depths over which the tracked sharks occurred
were 53 to 94 m, and mean depth gradients were 2.2 to
4.7%. Vertical distribution data from the seven PSAT-
tagged basking sharks indicated that during this time period
in the study site, the sharks tended to spend the majority of
their time in the upper water column (Figure 3). On
average, basking sharks spent 66.4% of the time in the
upper 25 m of the water column, with 43.3% of their
time at less than 10 m (Figure 3). There was no discernible
diel vertical migration pattern, with sharks predominantly

using the upper water column during both day and night
(Figure 3). We assumed that the ten SPOT-tagged basking
sharks had similar vertical behavior.
The distributions of the habitats used in each time

period relative to what was determined as ‘available’ from
the randomization procedure varied from month to month
(Figure 4). The habitats occupied by tagged sharks had
mean monthly SSTs of 13.1 to 19.8°C, chlorophyll-a
(Chl-a) concentrations of 0.9 to 2.8 mg L−1, and net pri-
mary production (PP) levels of 2,177 to 3,409 mg C m−2

y−1 (Figure 4). In most periods, there were only weak as-
sociations with surface fronts based upon SST and Chl-a
gradients or the front probability index (Figure 4). Mean
monthly use was 2.2 to 14.4% for Chl-a gradient, 5.2 to
13.1% for SST gradient, and 0.01 to 0.06 for the front
probability index.
Significant selection for particular variables was uncom-

mon and also varied across months. No variables were
found to be significant predictors of habitat selection dur-
ing Months A and B, even at the most liberal probability
level (α = 0.50) (Figure 5). Habitat use largely matched the
habitat available during these months. However, during
Months C and D basking sharks showed indications of
selection for shallower waters and areas with greater
PP, Chl-a, and Chl-a gradients than what was available
(Figure 4). Additionally, during Month D, significant
selection was detected for cooler waters (13.1 ± 8.6°C)
than what was available (Figure 4). A notable drop in

Table 1 Summary of satellite-tagged basking sharks used in this study

Shark Tag type Total length (m) Date tagged Duration (days) Number of
Argos positions

Track
distance (km)

Mean rate of
movement (kmh−1)

B1 SPOT 7.2 18 Jun 05 10 51 152 1.30

B2 SPOT 8.2 3 Jul 05 9 17 132 1.80

B3 SPOT 6.4 3 Jul 05 17 49 256 1.13

B4 SPOT ? 21 Jul 05 36 84 701 1.29

B5 SPOT 7.1 21 Jul 05 17 42 324 1.72

B6 SPOT 5.9 26 Aug 05 45 177 946 1.64

B7 SPOT 7.2 26 Aug 05 8 47 148 2.03

B8 SPOT 6.7 3 Oct 05 5 26 109 2.48

B9 SPOT 6.7 3 Oct 05 9 34 138 1.58

B10 SPOT 8.8 3 Oct 05 7 20 67 1.21

53328 PSAT 7.2 18 Jun 05 79 Depth only

53329 PSAT 8.1 3 Jul 05 98 Depth only

52555 PSAT ? 21 Jul 05 82 Depth only

52566 PSAT 7.7 21 Jul 05 78 Depth only

52561 PSAT 7.1 21 Jul 05 80 Depth only

52556 PSAT 7.3 21 Jul 05 68 Depth only

52560 PSAT 7.0 26 Aug 05 42 Depth only

Data from the PSAT-tagged sharks were only used to describe the water column depth distribution of basking sharks during the study period. The ‘Duration’
column for the PSAT-tagged sharks refers to the number of days used in the depth distribution analysis, and only includes data from the same time period that
SPOT-tagged sharks were tracked in the study site.
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temperature occurred in the area used by the sharks in
Cape Cod Bay between Months C and D (Figures 1, 4).
There was also some indication of selection for areas
with steeper SST gradients and lower front probability
during Month D (Figure 4).
Collectively, the strongest habitat selection indicators

during the monthly periods were PP (greater than ran-
dom) and depth (shallower than random) (Figure 5).
The movements of the basking sharks relative to PP in
each month are plotted in Figure 6. Visual comparisons
demonstrate that the sharks largely were found within
or along the edges of some of the most highly productive
areas in the study site (Figure 6). Chl-a concentration
(greater than random), Chl-a gradient (steeper than ran-
dom), SST gradient (steeper than random), and front
probability (lower than random) were moderate habitat
selection predictors (Figure 5). Except for Month D, SST
was a poor predictor of habitat selection (Figure 5).
Finally, bottom depth gradient tended to be the poorest
habitat selection indicator (Figure 5).

A week in the life of two basking sharks
The week-long track segments selected for fine-scale
analysis were from shark B4 (21 to 28 July 2005) and
shark B6 (26 August to 2 September 2005). These seg-
ments included the most filtered SPOT positions in a
seven-day period, had nearly complete satellite cover-
age, and were representative of the movements of other
sharks.
Shark B4 was tagged 16 km east of Cape Cod, initially

traveled to the northwest, but then moved back to the
southeast toward the Great South Channel where it
remained for the duration of this week-long track seg-
ment. The activity space for the track segment was
1,327 km2. This shark occupied a relatively narrow range
of SST during this period (18.1 to 20.3°C) (Figure 4).
Significant habitat selection was not detected for any
environmental variable and most habitat use distribu-
tions were comparable to those in the monthly intervals
(Figure 4). The only notable differences were in greater
than expected values of front probability and lower than

a

dc

b
MCP = 11,034 km2 MCP = 13,824 km2

MCP = 2,409 km2 MCP = 1,561 km2

Figure 1 Satellite-linked ‘smart’ position only transmitter (SPOT) positions (white circles) and correlated random walk positions (black
dots) during Month A - June/July (a), Month B - July/August (b), Month C - August/September (c), and Month D - September/October
(d) overlaid on monthly composite sea surface temperature (SST) from the concurrent period. Stars symbolize the tagging locations of the
sharks. The cumulative monthly minimum convex polygon (MCP) area is also provided as a measurement of activity space. Habitat use was
derived from the SPOT positions and available habitat was derived from the randomized positions in each period.
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expected values for Chl-a and PP (Figure 4). The area
used by this shark in the Great South Channel appeared
to be adjacent to, rather than within, a high Chl-a and
PP area over Nantucket Sound and Nantucket Shoals.
The week-long track segment for shark B6 started

25 km off the northeast side of Cape Cod. It swam to

the west and spent most of this track segment (as well
as the remainder of its 45-day track) in northern Cape
Cod Bay. The activity space during this week was small
(644 km2) and the SST range occupied was also rela-
tively narrow (19.1 to 20.5°C) (Figure 4). Significant
selection (at α = 0.50 only) was detected for shallower
than expected depths and higher than expected values of
Chl-a and PP (Figure 4). During this week, Cape Cod
Bay had the highest PP levels (>5,000 mg C m−2 y−1) in
proximity to the starting location of B6 and the shark
clearly appeared to prefer this area. Habitat use distribu-
tions for all other variables were comparable to the
monthly intervals (Figure 4).

Discussion
Recent technological advancements have provided re-
searchers with new tools to investigate the movements
and behavior of highly mobile marine species like sharks
[17-19] and have given us unprecedented views into the
dynamic environment that they occupy [35,36]. Satellite-
based biotelemetry, when combined with satellite-based
environmental observation, has the potential to vastly
improve our understanding of the ecology of enigmatic
marine species [6,37-39]. Despite the utility of using
remotely-sensed sea surface measurements when studying
the large-scale movements of sharks, their use has been

Figure 3 Day (light gray bars) and night (dark gray bars) water
column depth distribution from seven pop-up satellite archival tag
(PSAT)-tagged basking sharks in the study site. The bars represent
the mean proportion of time spent at depth across all individuals
and the whiskers represent one standard deviation from the mean.

Massachusetts

VS

GSC

CC Bay

MV

N

CC

GB

NS

SB

Gulf of Maine

Figure 2 Argos locations of 10 satellite-linked ‘smart’ position only transmitter (SPOT)-tagged basking sharks overlaid on detailed
bathymetry (10-m contours) off Massachusetts between 18 June and 12 October 2005. CC = Cape Cod, SB = Stellwagen Bank, MV =Martha’s
Vineyard, VS = Vineyard Sound, N = Nantucket, NS = Nantucket Shoals, GSC = Great South Channel, and GB = Georges Bank. The white arrows
indicate the major surface current circulation pathways during the study.
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limited to visually overlaying tracks on SST [20,24,30,40]
or analyzing few available variables [6,21,25]. Though this
approach can be informative, more quantitative analytical
techniques can identify patterns that are not detectable
from simple visual comparisons [37,39,41]. Research on

these species should strive to more explicitly account
for numerous habitat variables because many biotic and
abiotic factors interact to influence resource availability,
especially for species that feed at low trophic levels
(such as zooplanktivores) [37,39,41,42]. We used a

Month A Month B Month C Month D

Depth (m)

Depth Gradient (%)

SST (°C)

SST Gradient  

Front Probability

Chl-a Gradient (%)

Week A Week B

** **

***

***

***

*

*

**

**

*

*

*

*

N/A

Figure 4 Cumulative distribution functions (CDFs) of habitat use (solid red lines) and habitat availability (dashed black lines) for eight
habitat variables in four monthly time intervals and two weekly time intervals. Significant differences between CDFs are denoted with
asterisks as follows: significant at α = 0.50 (*), significant at α = 0.20 (**), and significant at α = 0.05 (***).
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combination of satellite biotelemetry data and satellite-
based oceanographic observations, to gain new insights
into habitat selection patterns by basking sharks at
comparatively high spatiotemporal resolution. This
is the first time SPOT tags have been used to study
detailed movement patterns of basking sharks in the
western North Atlantic.
A challenging tradeoff to consider with this approach

to habitat selection is the temporal scale of analysis. This
needs to be considered with respect to the time periods
covered by tracking and the availability and coverage
levels of the selected satellite oceanographic data. Longer
time intervals (monthly or seasonal time scales) may
be advantageous for providing more tracking positions
(that is, more potential statistical power) and satellite
coverage is likely to be complete. Depending on the
total duration of the tracking period, it also results in
fewer time intervals to statistically analyze, making
data management, analysis, and interpretations sim-
pler. However, oceanographic conditions are rarely
static in space and time, and the longer the time period
selected, the more diluted sea surface features may be-
come due to blending and averaging of the satellite
data. Given our data, we selected month-long intervals
so that all of the available tracking data could be
included and consistent intervals could be used for all
remotely sensed observations. Examining a subset of
tracks at a finer, week-long interval generally did not
improve significance over those examined at the
monthly interval. The reasons for this are unclear, but
could be related to the small number of tracking posi-
tions available for analysis at that temporal scale.

These tradeoffs should be carefully considered on a
case by case basis, but the optimal balance should
allow use of the maximum amount of tracking data
while simultaneously minimizing dilution of environ-
mental observations.
Basking sharks have the capacity to make long-distance

movements spanning thousands of kilometers [5,29]. By
comparison, the summer/fall activity spaces docu-
mented in this study are much smaller. The sharks
tracked in this study constrained their movements to
small, discrete areas and showed signs of strong site at-
tachment spanning days to weeks. The slower rates of
movement and repeated back-and-forth movements of
these sharks, such as shark B1 in Vineyard Sound in
Month A and sharks B6 to B10 during Months C and D
in Cape Cod Bay, suggest area-restricted searching be-
havior, a pattern that occurs in a variety of species
when in the presence of abundant resources [8,43].
Given our general understanding of why basking sharks
occur in this region [12-14], it is most likely these
sharks were orienting to food (that is zooplankton)
and/or conspecifics (for mating or socialization).
Our results suggest that shallow bottom depths (that

is, continental shelf waters) and high PP can be import-
ant indicators of summer/fall habitat for basking sharks
off New England. Basking sharks are widely known for
their seasonal occurrence in such productive coastal
areas [10,13,16,44]. Chl-a concentration and surface gra-
dients (Chl-a, SST) also appear to contribute to habitat
selection at times. Chl-a and PP are highly correlated
with each other [45], so it was expected that if one vari-
able was significant, the other would be also. These
measures of primary production (that is, phytoplankton
abundance) are indirect indicators of zooplankton
abundance, since the dominant pelagic zooplankton
species in this region are reliant upon grazing of phyto-
plankton [46]. Although not necessarily reliable in all
times and areas, remotely-sensed PP and Chl-a are
likely the most useful satellite observations with which
to study basking shark distributions due to their correl-
ation with basking shark prey. While SST (approxi-
mately 13 to 20°C) is likely an important predictor of
the seasonal presence of basking sharks [12], it did not
appear to significantly influence habitat selection at
finer scales within the study site.
It is important to recognize that the variables used in

this study were only indirect indicators of potential habi-
tat suitability and not necessarily features to which the
sharks were orienting. The oceanographic features we
analyzed are only partially correlated with the density
of potential zooplankton prey [25,45-47] and may not
show any correlation to other potential resources (for
example, conspecifics). The indirect measure of zoo-
plankton density may explain why significant selection

-1.0

-0.5

0.0

0.5

1.0

D

Month A

Month B

Month C

Month D

Month Mean

Week A

Week B

Figure 5 Monthly mean-ranked values of Dmax for eight habitat
variables derived from the cumulative distribution functions
(CDFs) in Figure 4. Dmax values greater than zero indicate habitat
use values higher than expected, while Dmax values less than zero
indicate habitat use values lower than expected. The dashed lines
indicate the critical values of Dmax at α = 0.50 (minimum significance
level) for the appropriate sample size (N) in each time period. The
blue dashed line is for Months A and B (N = 3), the red dashed line
is for Month C (N = 2), the green dashed line is for Month D (N = 4),
and the black dashed line is for Weeks A and B (N = 1).
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was not detected for any variables in Months A and B
(mid-June to mid-August). During this time period, the
tracked sharks primarily used the Great South Channel
and Nantucket Shoals area. Aggregations of zooplankton,
particularly the dominant copepod Calanus finmarchicus,
in this area are largely driven by advection processes (that
is, current circulation) that collect copepods from the Gulf
of Maine and flow southward to the Great South Channel
where surface convergences cause them to cluster
[2,48]. Therefore, even though the sharks may have
been foraging in a productive patch of zooplankton,
the physical processes promoting that productivity
were not directly correlated to the satellite variables
we analyzed. Similar challenges have been documented
in modeling North Atlantic right whale (Eubalaena
glacialis) occurrence in the Great South Channel [48].

Direct estimation of zooplankton abundance and
composition can only be done with in situ measure-
ments: for example, [46,47,49,50], but ongoing zoo-
plankton surveys can provide interpolated surfaces that
can be analyzed in a similar fashion as remotely-sensed
data [8,51]. Sims et al. [8] demonstrated with one such
zooplankton survey that basking sharks consistently
occupied regions with the highest available biomass of
copepods off the British Isles. Therefore, basking sharks
themselves may serve as ‘biological plankton recorders’
[32], in that their presence in an area may at times be a
better predictor of zooplankton abundance than any of
the available oceanographic data sources. Similar com-
parisons between basking shark movements and zoo-
plankton survey data should be attempted in other
regions where these data are available.

a

dc

b

2

2 2

2

Figure 6 Satellite-linked ‘smart’ position only transmitter (SPOT) tracks of basking sharks during Month A - June/July (a), Month
B - July/August (b), Month C - August/September (c), and Month D - September/October (d) overlaid on monthly composite PP from
the concurrent period. Stars symbolize the tagging locations of the sharks.
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Some aggregations of basking sharks in the Great
South Channel have been hypothesized to be associated
with courtship and mating, rather than foraging [14]. In
the North Atlantic, most evidence of courtship and mat-
ing behavior has been observed between May and July
[52-54]. However, the possible mating aggregations in the
Great South Channel [14] occurred during September and
October, outside the hypothesized mating season. If the
sharks tracked in the Great South Channel between June
and August (Months A and B) were associating with
conspecifics for courtship and mating, that could also
explain the apparent lack of correlation with oceano-
graphic features during that period. Little is known
about the reproductive cycle of basking sharks in the
western North Atlantic and mating activity could occur
over a longer time period and broader area than has
been described [14]. Additionally, foraging and mating
activities may occur concurrently in this species. How-
ever, it is likely that during periods when habitat selec-
tion is driven by proximity to conspecifics rather than
proximity to abundant zooplankton prey, the correl-
ation to oceanographic variables might be diminished.
Additional research is necessary to determine whether

basking shark focal habitats off New England are related
solely to foraging or if mating or other social activities
are also important for habitat selection at times. How-
ever, it may prove impossible to address this with only
remote sensing and telemetry. Evidence of courtship and
mating can typically only be found from visual observa-
tion [14,53] or examination of reproductive organs from
dead specimens [52].
The more significant selection indices for PP and

Chl-a during Months C and D (mid-August to mid-
October) indicate that resources used by the basking
sharks in Cape Cod Bay were more highly correlated to
those variables and, most likely, associated with prey.
As resources in the Great South Channel may have be-
come depleted or dispersed by the end of Month B, the
sharks transitioned to Cape Cod Bay where high PP
and Chl-a may have been indicators of high zooplankton
abundance [51]. However, direct correlation between
satellite-derived PP or Chl-a estimates and zooplankton
abundance are variable [25,45,46]. Also, given the close
proximity of multiple tagged sharks in Cape Cod Bay
and the small activity spaces they concurrently occupied,
we cannot completely preclude mating or socialization
activity from influencing habitat selection in that
period. Therefore, selection for certain environmental
variables may vary among areas and time periods.
Other site-specific processes could influence resource
distributions and resultant movement patterns.
Given the results of previous work [14,16,24,32,54], it

was expected that SST gradient and front probability
measures (i.e., thermal fronts) would be more significant

habitat selection indicators. Thermal fronts are widely
known to physically aggregate zooplankton and, hence,
zooplankton predators: for example, [24,32,48]. The fact
that these variables did not appear more significant in
our analysis does not necessarily mean basking sharks
do not orient to thermal fronts in this region. It is more
likely that the spatial and temporal resolution of the sat-
ellite observations we used were too coarse to capture
smaller-scale surface features (<5 to 10 km) [32,48].
More persistent, larger-scale tidal and shelf-slope fronts,
as well as the Gulf Stream edge, are more detectable by
satellites and tracked sharks appeared to prefer the cold
side of the shelf-slope front in the Great South Channel
during Months A and B. Basking shark aggregations
have been documented in this persistent frontal region
during fall [14], but sharks were found on one side of
the front or the other and not necessarily within the
zone with the steepest gradients. Spatial resolution is a
limitation of using satellite oceanography in habitat use
studies, in that it cannot be used to resolve habitat asso-
ciations that occur at a smaller scale than the resolution
of the environmental measurement. Visual overlays of
tracks on environmental surfaces using GIS remain an
essential aspect of interpreting movement patterns.
Using data from PSATs, we found that basking sharks

primarily preferred the upper water column (<25 m)
during the study period, which validated the use of
remotely-sensed surface measurements to study habitat
selection in this region. Had these sharks spent more
time at greater depths, there would likely be less rele-
vance to using sea surface observations. Basking sharks
have been documented to spend significant amounts of
time at mesopelagic depths (>200 m) during certain
times of the year [5,29], so incorporating some insights
into vertical behavior in the study site was a necessity.
However, since the zooplankton assemblage in the
Great South Channel and Cape Cod Bay can have vary-
ing vertical structure, including aggregation around the
thermocline and near the bottom [50,55-57], subsurface
conditions may also influence habitat selection at times.
The apparent lack of a diel vertical migration pat-

tern of the basking sharks we tagged during this
period suggests that either they were not associating
with vertically-migrating resources or their focal prey
may not have been vertically migrating during the
study period. Normal and reverse diel vertical migra-
tion patterns were detected in PSAT-tagged basking
sharks in the eastern North Atlantic; these patterns
reflected the site-specific vertical migration strategy
of the available prey [26]. However, the variable and
energetic hydrographic patterns around Cape Cod
[48,58] and the considerable inter- and intra-specific
variability in zooplankton vertical migration patterns
in this region [59] tend to keep prey available in
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surface waters during both day and night. During
some periods in this region, copepods have been docu-
mented to remain in surface waters throughout the
day and display no vertical migration [60].
With additional data collection on basking shark move-

ments and habitat use, it may be possible to model habitat
preferences using more advanced composite, mixed, or
additive models that account for multiple variables
simultaneously: for example, [6,37,38]. Improving the
correlation of remotely-sensed physical variables to
zooplankton abundance patterns would be a beneficial
step in this process. Such modeling could then be used to
better predict basking shark distributions based upon only
remotely-sensed environmental observations or, further-
more, predict how distributions may shift under changing
climate conditions [16,61]. Zooplankton distribution and
population dynamics in this region are intricately con-
nected with climate patterns [1,46,47] Therefore, given the
projected impacts of global warming on the western North
Atlantic, including higher surface and bottom tempera-
tures, increased stratification of the water column, changes
in circulation patterns, shifting timing of phytoplankton
blooms, and possible declines in primary productivity
[62-65], bottom-up ecological impacts may be more dra-
matically experienced for zooplanktivores like the basking
shark. Given the ongoing conservation concerns for bask-
ing sharks [44] and their potential vulnerability to climate
change, more research on movements and habitat selec-
tion will help inform conservation strategies. Studies link-
ing satellite biotelemetry and oceanography provide a
powerful means to address these concerns.

Conclusions
This is the first study to examine detailed movements of
basking sharks in their summer/fall habitats in the west-
ern North Atlantic. High resolution movements from
SPOT-tagged sharks were compared to satellite-based
oceanographic measurements concurrent with the pe-
riods of tracking, thereby providing new insights into en-
vironmental factors that influence habitat selection in
this region. PSATs were also used to reveal that basking
sharks primarily used near-surface waters during the
study period, validating the use of remotely-sensed sur-
face observations. Examination of a subset of tracks at
7-day intervals did not improve statistical significance of
habitat selection as compared to 30-day intervals. How-
ever, this temporal tradeoff should be considered on a
case by case basis in future studies. Satellite-based esti-
mates of PP, Chl-a concentrations, and surface gradients
were the best habitat predictors, but use of these vari-
ables can be confounded by site-specific physical circula-
tion patterns and/or at times when sharks may be
associating with conspecifics. Basking sharks focus their
activities in discrete areas with high productivity, but

additional research is necessary to better link satellite
oceanographic data with zooplankton community distri-
butions in this region.

Methods
Tag design and deployment
The primary tags used in this study were towed satellite-
linked ‘smart’ position-only transmitting tags (SPOT4,
Wildlife Computers, Redmond, WA, USA), which transmit
a radio signal to the Argos satellite system whenever the
tag’s antenna is above the water’s surface. The satellites
then calculate the tag’s geographic location (latitude
and longitude) by measuring the Doppler shift of the
transmission frequency and the information is relayed
to the investigator (refer to: http://www.argos-system.
org). A ‘location class’ is assigned to each detection,
indicating the approximate mean error associated with
the position estimate [66]. Argos positions were filtered so
that higher-accuracy 0 (mean error = 5.6 km), 1 (mean
error = 1.0 km), 2 (mean error = 0.8 km), and 3 (mean
error = 0.4 km) location classes were used [66].
SPOT tags were attached to ten free-swimming bask-

ing sharks (5.9 to 8.8 m total length) between June and
October 2005 using the harpoon technique described
by Chaprales et al. [67] (Table 1). A stainless steel dart
anchor was harpooned approximately 10 cm into the
dorsal musculature near the base of the first dorsal fin.
The tags were attached to the anchor by a 1.5-m cable
tether and trailed above the shark’s dorsum as it swam.
For buoyancy, each tag was mounted on a custom-built
syntactic foam base, which was counterweighted with a
wooden keel with a lead core for hydrodynamic stability.
Tags could break the water’s surface and communicate
with the satellites whenever the shark was within ap-
proximately 1 m of the surface.
Seven additional basking sharks were tagged with PSATs

(PAT4, Wildlife Computers, Redmond, WA, USA) to pro-
vide insights into depth distribution of the sharks during
the study period (Table 1). These sharks were tagged
during the same time period in the same locations as
those with the SPOT tags [5], and, therefore, serve as
reasonable proxies for the vertical movements of the
SPOT-tagged sharks. Depth, temperature, and geoloca-
tion data from the PSATs were examined, and only
depth distribution data during the sharks’ summer/fall
residency in the Gulf of Maine region were included in
this analysis. Due to the comparatively low positional
accuracy associated with PSATs [31], these sharks were
not included in any horizontal movement or habitat
selection analyses (Table 1).
All shark tagging methods followed internationally rec-

ognized guidelines on animal ethics, and complied with
Massachusetts Division of Marine Fisheries regulations.
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Environmental observations
The study area was the waters off Cape Cod, Massachu-
setts, USA, in the western North Atlantic Ocean (Figure 2).
The region is a productive continental shelf ecosystem
well-known for its commercial and recreational fisheries:
for example, [11]. The region has SSTs that typically range
annually between 6 and 24°C [68]. Nutrient fluxes and
large-scale horizontal and vertical oceanographic pro-
cesses (for example, surface currents, shelf-slope fronts,
tidal mixing fronts, riverine freshwater inputs) lead to
seasonal plankton blooms and high overall biological
productivity [2,46,50,51,55]. Additionally, localized hydro-
graphic patterns create dynamic small-scale features (for
example, thermal fronts, density gradients) that are known
to concentrate zooplankton [56,57,69].
The use of satellite-based sea surface observations is

particularly practical because SPOT tags only provide
positional information when the tagged animal is at the
ocean’s surface. While remote sensing cannot provide
insights into physical or biological gradients below the
surface, matching surface conditions to surface-oriented
shark positions allows direct comparisons between the
sharks and the environmental conditions they encoun-
tered at the surface. Since zooplankton density cannot be
directly estimated via satellite observation, other surface
features were used as indicators of areas with high second-
ary productivity [46,70]. Consistent with other marine
zooplanktivore habitat use studies [6,16,39,41,42], the fol-
lowing environmental variables were selected to examine
basking shark habitat use: bottom depth, bottom depth
gradient, SST, SST gradient, oceanic front probability,
chlorophyll-a (Chl-a) concentration, Chl-a gradient, and
net primary production (PP). Gradients were estimated
in ArcGIS as the maximum percent change across each
cell and its adjacent cells (3 × 3 cell gradients). Steeper
surface gradients were considered to be indicative of
frontal zones.
All satellite oceanography data during the study period

were obtained from NOAA’s CoastWatch, Environmental
Research Division’s Data Access Program (ERDDAP);
metadata associated with each satellite and its sensors are
available on the program’s website (http://coastwatch.pfeg.
noaa.gov/erddap/index.html). Measurements of SST were
collected from NOAA’s Polar-Operational Environmen-
tal Satellites (POES), Pathfinder v5.0 Advanced Very
High Resolution Radiometer (AVHRR) satellite sensor
[71]. Front probability was generated from NOAA’s
Geostationary-orbiting Operational Environmental Space-
craft (GOES-12) [70]. Chl-a concentration observations
were collected from the National Aeronautics and
Space Administration’s (NASA) Aqua satellite with its
Moderate Resolution Imaging Spectroradiometer sensor
(Aqua-MODIS) [72]. Net primary production estimates
were generated by combining POES SST measurements

with Chl-a observations from the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) sensor on the GeoEye Orbview-
2 satellite [62]. Satellite observations had a geographic
resolution of 0.05° latitude (5.6 km) by 0.05° longitude
(approximately 4.1 km in the study site), except for PP
which had a resolution of 0.1° (11.2 km) latitude by 0.1°
longitude (approximately 8.2 km). We used the ETOPO1
Global Relief Model for ocean bathymetry in the study
area, which has 1 arc-minute depth resolution [73].
The shortest consistent time intervals available for all

satellite data sets during the study period were monthly
composites. Therefore, the tracking data were broken
into monthly intervals to match the temporal scale of
the environmental observations. Monthly composites
also maximized the satellite coverage for the study site,
minimized the appearance of environmental data gaps
due to cloud cover or other interference, and allowed
full utilization of the tracking data. To most closely
match the time periods when sharks were tracked, the
monthly intervals were defined as follows: 17 June to 16
July 2005 (Month A); 17 July to 16 August 2005 (Month
B); 17 August to 16 September 2005 (Month C), and 17
September to 16 October 2005 (Month D). All Argos
positions from the tagged sharks were received during
these periods. Month A included positions from three
sharks (B1, B2, and B3), Month B included positions
from three sharks (B3, B4, and B5), Month C included
positions from two sharks (B6 and B7), and Month D in-
cluded positions from four sharks (B6, B8, B9, and B10).

Movements and habitat selection
SPOT tag positions less than two hours from the previ-
ous position were removed to reduce bias from serial
autocorrelation and help normalize the distribution of
track step intervals [74,75]. The two-hour minimum
interval between SPOT positions represented a tradeoff
between attempting to minimize autocorrelation [74,75]
while still maintaining as many observations as possible
for analysis, given the small overall sample size. Errone-
ous positions, including those on land or those that re-
sulted in unrealistic rates of movement (>10 kmh−1)
were also removed: for example, [39]. Finally, a few posi-
tions (N = 3) that were indicative of migratory move-
ments out of the study site were removed (which are
longer, directed steps, outside the activity space of all
other positions). We assumed that the remaining posi-
tions, which were plotted using geographic information
system (GIS) software (ArcGIS 10.0, ESRI), represented
movements associated with local resources. Only the fil-
tered positions were used in habitat selection analyses.
Minimum convex polygons were calculated in ArcGIS
to provide a measure of the activity space of the sharks
over various intervals.
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Each SPOT tag position was assigned the satellite mea-
surements of the underlying monthly composite environ-
mental surfaces (SST, Chl-a, PP, etc.) using ArcGIS. Given
the comparatively high positional accuracy of SPOT tags:
for example, [66], and our approach of matching surface-
oriented shark positions to remotely-sensed sea surface
conditions, we did not filter or interpolate tracks beyond
the raw Argos locations (which could result in interpo-
lated positions falling on habitats not actually occupied). If
a position fell on a cell that lacked a satellite measurement
(for example, due to cloud interference), the position was
assigned the value of the nearest positive cell. This re-
sulted in a distribution of observations representing habi-
tat use of the sharks.
Habitat selection was quantified by comparing the use

of a surface habitat type/feature to its availability: for ex-
ample, [75,76]. To test for selection of the different habi-
tat variables, a track randomization procedure was used
[8,41,77,78]. To approximate habitat availability, 250
random walk simulations were generated for each track
or track segment in each monthly period using the Geo-
spatial Modeling Environment [79] and ArcGIS. Each
random walk simulation was created by starting from
the first track position of each shark and having step
lengths and turning angles randomly drawn from the
empirical distribution of observed steps and angles [79].
The number of steps generated for each random walk
was set equal to the total number of observed steps in
each monthly period. All random walks were con-
strained so that they did not fall on land. The 250 ran-
dom walk simulations for each track resulted in a cloud
of random points (approximately 34,000 to 94,000 points
per monthly period) around each set of observed tracks,
which we defined as the available habitat for that
monthly period. Each random point was then assigned
satellite environmental values in the same manner used
for the tracking positions described above. Due to simi-
larities in the areas utilized across sharks in each
monthly period, all SPOT tag positions and their associ-
ated random walk points were pooled across individuals
to examine habitat use and test for habitat selection.
Pooling of observations was also necessary due to the
small overall sample size; limiting the ability to conduct
these analyses at the individual level (refer to Results).
Habitat selection was inferred when the observed use

of a particular habitat variable was significantly different
than what would be expected from random movements
[41,77,78]. Cumulative distribution functions (CDFs) of
habitat use and availability were generated for each inde-
pendent environmental variable and time interval (that
is, 8 variables × 4 monthly periods = 32 total compari-
sons). CDFs have several practical benefits for habitat
selection analyses. Not only can they be used to visualize
the range and cumulative frequencies of continuous

observations, but they also avoid issues with the location
and shape of distributions seen in common histograms
[80,81]. Furthermore, they can also provide an indication
of the directionality of the habitat used relative to the
habitat available (that is demonstrate if the used values
tended to be higher or lower than the available values).
Significant differences between distributions can be tested
with the nonparametric Kolmogorov-Smirnov test, which
compares the maximum distance (Dmax) between the
two functions to established critical values for a given α
[80,81]. The test is also practical when sample size is small,
as in this study. We used the two-sample Kolmogorov-
Smirnov test to identify significant differences between the
CDFs of used (observed) and available (random) habitats
[37]. Critical values for Dmax were selected based on the
number of sharks tracked in each monthly period (N = 2
to 4) [81]. Given the conservative degrees of freedom from
the small sample size, we tested for significance at multiple
probabilities (α = 0.05, 0.20, and 0.50). Using conservative
and more liberal sets of critical values provided a range of
significance in the habitat selection tests, helped reduce
the risk of Type II error, and allowed us to rank the rela-
tive significance of the different independent variables.
For insights into habitat selection at an even finer tem-

poral resolution, the two basking shark tracks with the
most Argos positions and most complete satellite envir-
onmental coverage in a week-long period (a subset of
the tracking positions analyzed at the monthly interval)
were examined in relation to the same satellite observa-
tions described above. The week-long track segments
were compared to seven-day composite SST, ten-day
composite front probability, eight-day composite Chl-a,
and eight-day composite PP covering the same week.
The habitat selection procedures described above were
repeated at the weekly scale for those two individual
tracks. This analysis was also used to provide an assess-
ment of whether the monthly composite approach re-
sulted in weakened or diluted habitat use patterns due
to the averaging of environmental observations over a
longer time period.
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