284 research outputs found

    Energy-Efficient Resource Allocation Optimization for Multimedia Heterogeneous Cloud Radio Access Networks

    Full text link
    The heterogeneous cloud radio access network (H-CRAN) is a promising paradigm which incorporates the cloud computing into heterogeneous networks (HetNets), thereby taking full advantage of cloud radio access networks (C-RANs) and HetNets. Characterizing the cooperative beamforming with fronthaul capacity and queue stability constraints is critical for multimedia applications to improving energy efficiency (EE) in H-CRANs. An energy-efficient optimization objective function with individual fronthaul capacity and inter-tier interference constraints is presented in this paper for queue-aware multimedia H-CRANs. To solve this non-convex objective function, a stochastic optimization problem is reformulated by introducing the general Lyapunov optimization framework. Under the Lyapunov framework, this optimization problem is equivalent to an optimal network-wide cooperative beamformer design algorithm with instantaneous power, average power and inter-tier interference constraints, which can be regarded as the weighted sum EE maximization problem and solved by a generalized weighted minimum mean square error approach. The mathematical analysis and simulation results demonstrate that a tradeoff between EE and queuing delay can be achieved, and this tradeoff strictly depends on the fronthaul constraint

    Protein engineering of Pseudomonas fluorescens peroxidase Dyp1B for oxidation of phenolic and polymeric lignin substrates

    Get PDF
    Directed evolution was applied to dye-decolourizing peroxidase Dyp1B from Pseudomonas fluorescens Pf-5, in order to enhance the activity for oxidation of phenolic and lignin substrates. Saturation mutagenesis was used to generate focused libraries at 7 active site residues in the vicinity of the heme cofactor, and the libraries were screened for activity towards 2,6-dichlorophenol. Mutants N193 L and H169 L were found to show 7–8 fold enhanced kcat/KM towards DCP, and replacements at Val205 and Ala209 also showed enhanced activity towards alkali Kraft lignin. Residues near the predicted Mn(II) binding site were also investigated by site-directed mutagenesis, and mutants S223 N and H127R showed 4-7-fold increased kcat/KM for Mn(II) oxidation. Mutant F128R also showed enhanced thermostability, compared to wild-type Dyp1B. Testing of mutants for low molecular weight product release from Protobind alkali lignin revealed that mutant H169 L showed enhanced product release, compared with WT enzyme, and the formation of three low molecular weight metabolites by this mutant was detected by reverse phase HPLC analysis

    Preasymptotic Convergence of Randomized Kaczmarz Method

    Get PDF
    Kaczmarz method is one popular iterative method for solving inverse problems, especially in computed tomography. Recently, it was established that a randomized version of the method enjoys an exponential convergence for well-posed problems, and the convergence rate is determined by a variant of the condition number. In this work, we analyze the preasymptotic convergence behavior of the randomized Kaczmarz method, and show that the low-frequency error (with respect to the right singular vectors) decays faster during first iterations than the high-frequency error. Under the assumption that the inverse solution is smooth (e.g., sourcewise representation), the result explains the fast empirical convergence behavior, thereby shedding new insights into the excellent performance of the randomized Kaczmarz method in practice. Further, we propose a simple strategy to stabilize the asymptotic convergence of the iteration by means of variance reduction. We provide extensive numerical experiments to confirm the analysis and to elucidate the behavior of the algorithms.Comment: 20 page

    Указ президента України “Про проведення Всеукраїнської молодіжної акції “Пам’ятати. Відродити. Зберегти”

    Get PDF
    Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among different plant species. Moreover, it is unclear whether impairment of such genes has potential in disease resistance breeding due to possible fitness costs associated with impaired alleles. Here we show that the Arabidopsis PMR4 and DMR1, genes encoding a callose synthase and homoserine kinase respectively, have functional orthologs in tomato with respect to their S-gene function. Silencing of both genes using RNAi resulted in resistance to the tomato powdery mildew fungus Oidium neolycopersici. Resistance to O. neolycopersici by SlDMR1 silencing was associated with severely reduced plant growth whereas SlPMR4 silencing was not. SlPMR4 is therefore a suitable candidate gene as target for mutagenesis to obtain alleles that can be deployed in disease resistance breeding of tomato

    Electron Tunneling through Pseudomonas aeruginosa Azurins on SAM Gold Electrodes

    Get PDF
    Robust voltammetric responses were obtained for wild-type and Y72F/H83Q/Q107H/Y108F azurins adsorbed on CH_3(CH_2)_nSH:HO(CH_2)_mSH (n=m=4,6,8,11; n=13,15 m=11) self-assembled monolayer (SAM) gold electrodes in acidic solution (pH 4.6) at high ionic strengths. Electron-transfer (ET) rates do not vary substantially with ionic strength, suggesting that the SAM methyl headgroup binds to azurin by hydrophobic interactions. The voltammetric responses for both proteins at higher pH values (>4.6 to 11) also were strong. A binding model in which the SAM hydroxyl headgroup interacts with the Asn47 carboxamide accounts for the relatively strong coupling to the copper center that can be inferred from the ET rates. Of particular interest is the finding that rate constants for electron tunneling through n = 8, 13 SAMs are higher at pH 11 than those at pH 4.6, possibly owing to enhanced coupling of the SAM to Asn 47 caused by deprotonation of nearby surface residues

    Functional Scaffold‐Free Bone Equivalents Induce Osteogenic and Angiogenic Processes in a Human In Vitro Fracture Hematoma Model

    Get PDF
    After trauma, the formed fracture hematoma within the fracture gap contains all the important components (immune/stem cells, mediators) to initiate bone regeneration immediately. Thus, it is of great importance but also the most susceptible to negative influences. To study the interaction between bone and immune cells within the fracture gap, up-to-date in vitro systems should be capable of recapitulating cellular and humoral interactions and the physicochemical microenvironment (eg, hypoxia). Here, we first developed and characterized scaffold-free bone-like constructs (SFBCs), which were produced from bone marrow-derived mesenchymal stromal cells (MSCs) using a macroscale mesenchymal condensation approach. SFBCs revealed permeating mineralization characterized by increased bone volume (mu CT, histology) and expression of osteogenic markers (RUNX2, SPP1, RANKL). Fracture hematoma (FH) models, consisting of human peripheral blood (immune cells) mixed with MSCs, were co-cultivated with SFBCs under hypoxic conditions. As a result, FH models revealed an increased expression of osteogenic (RUNX2, SPP1), angiogenic (MMP2, VEGF), HIF-related (LDHA, PGK1), and inflammatory (IL6, IL8) markers after 12 and 48 hours co-cultivation. Osteogenic and angiogenic gene expression of the FH indicate the osteoinductive potential and, thus, the biological functionality of the SFBCs. IL-6, IL-8, GM-CSF, and MIP-1 beta were detectable within the supernatant after 24 and 48 hours of co-cultivation. To confirm the responsiveness of our model to modifying substances (eg, therapeutics), we used deferoxamine (DFO), which is well known to induce a cellular hypoxic adaptation response. Indeed, DFO particularly increased hypoxia-adaptive, osteogenic, and angiogenic processes within the FH models but had little effect on the SFBCs, indicating different response dynamics within the co-cultivation system. Therefore, based on our data, we have successfully modeled processes within the initial fracture healing phase in vitro and concluded that the cross-talk between bone and immune cells in the initial fracture healing phase is of particular importance for preclinical studies. (c) 2021 American Society for Bone and Mineral Research (ASBMR)

    A self-adaptive segmentation method for a point cloud

    Get PDF
    The segmentation of a point cloud is one of the key technologies for three-dimensional reconstruction, and the segmentation from three-dimensional views can facilitate reverse engineering. In this paper, we propose a self-adaptive segmentation algorithm, which can address challenges related to the region-growing algorithm, such as inconsistent or excessive segmentation. Our algorithm consists of two main steps: automatic selection of seed points according to extracted features and segmentation of the points using an improved region-growing algorithm. The benefits of our approach are the ability to select seed points without user intervention and the reduction of the influence of noise. We demonstrate the robustness and effectiveness of our algorithm on different point cloud models and the results show that the segmentation accuracy rate achieves 96%

    Antifibrinolytic Role of a Bee Venom Serine Protease Inhibitor That Acts as a Plasmin Inhibitor

    Get PDF
    Bee venom is a rich source of pharmacologically active substances. In this study, we identified a bumblebee (Bombus ignitus) venom Kunitz-type serine protease inhibitor (Bi-KTI) that acts as a plasmin inhibitor. Bi-KTI showed no detectable inhibitory effect on factor Xa, thrombin, or tissue plasminogen activator. In contrast, Bi-KTI strongly inhibited plasmin, indicating that it acts as an antifibrinolytic agent; however, this inhibitory ability was two-fold weaker than that of aprotinin. The fibrin(ogen)olytic activities of B. ignitus venom serine protease (Bi-VSP) and plasmin in the presence of Bi-KTI indicate that Bi-KTI targets plasmin more specifically than Bi-VSP. These findings demonstrate a novel mechanism by which bumblebee venom affects the hemostatic system through the antifibrinolytic activity of Bi-KTI and through Bi-VSP-mediated fibrin(ogen)olytic activities, raising interest in Bi-KTI and Bi-VSP as potential clinical agents

    A microfluidic-SERSplatform for isolation and immuno-phenotyping of antigen specific T-cells

    Get PDF
    T-cells play a major role in host defense mechanisms against many diseases. With the current growth of immunotherapy approaches, there is a strong need for advanced technologies to detect and characterize these immune cells. Herein, we present a simple approach for the isolation of antigen specific T-cells from the complex biological sample based on T-cell receptor (TCR) and peptide major histocompatibility complex (pMHC) interaction. Subsequently, we characterize those antigen specific T-cells by profiling TCR expression heterogeneity. Our approach utilizes an alternating current electrohydrodynamic (ac-EHD) based microfluidic platform for isolation and surface enhanced Raman scattering (SERS) for TCR expression profiling. The use of ac-EHD enables specific isolation of T-cells by generating a nanoscopic shear force at the double layer of the sensing surface which enhances the frequency of pMHC and TCR interactions and consequently shears off the nonspecific targets. TCR expression profiling of the isolated T-cells was performed by encoding them with SERS-labelled pMHCs followed by SERS detection in bulk as well as in single T-Cell. In proof-of-concept experiments, 56.93 ± 7.31% of the total CD4+T-cells were captured from an excess amount of nonspecific cells (e.g., PBMCs) with high specificity and sensitivity (0.005%). Moreover, TCR analysis data using SERS shows the heterogeneity in the T-cell receptor expression which can inform on the activation status of T-cells and the patient’s response to immunotherapy. We believe that this approach may hold potential for numerous applications towards monitoring immune status, understanding therapeutic responses,and effective vaccine development

    Genetic Variation of the Human α-2-Heremans-Schmid Glycoprotein (AHSG) Gene Associated with the Risk of SARS-CoV Infection

    Get PDF
    Genetic background may play an important role in the process of SARS-CoV infection and SARS development. We found several proteins that could interact with the nucleocapsid protein of the SARS coronavirus (SARS-CoV). α-2-Heremans-Schmid Glycoprotein (AHSG), which is required for macrophage deactivation by endogenous cations, is associated with inflammatory regulation. Cytochrome P450 Family 3A (CYP4F3A) is an ω-oxidase that inactivates Leukotriene B4 (LTB4) in human neutrophils and the liver. We investigated the association between the polymorphisms of these two inflammation-associated genes and SARS development. The linkage disequilibrium (LD) maps of these two genes were built with Haploview using data on CHB+JPT (version 2) from the HapMap. A total of ten tag SNPs were selected and genotyped. In the Guangzhou cohort study, after adjusting for age and sex, two AHSG SNPs and one CYP4F3 SNP were found to be associated with SARS susceptibility: rs2248690 (adjusted odds ratio [AOR] 2.42; 95% confidence interval [CI] 1.30-4.51); rs4917 (AOR 1.84; 95% CI 1.02-3.34); and rs3794987 (AOR 2.01; 95% CI 1.10–3.68). To further validate the association, the ten tag SNPs were genotyped in the Beijing cohort. After adjusting for age and sex, only rs2248690 (AOR, 1.63; 95% CI, 1.30–2.04) was found to be associated with SARS susceptibility. The combined analysis of the two studies confirmed tag SNP rs2248690 in AHSG as a susceptibility variant (AOR 1.70; 95% CI 1.37–2.09). The statistical analysis of the rs2248690 genotype data among the patients and healthy controls in the HCW cohort, who were all similarly exposed to the SARS virus, also supported the findings. Further, the SNP rs2248690 affected the transcriptional activity of the AHSG promoter and thus regulated the AHSG serum level. Therefore, our study has demonstrated that the AA genotype of rs2268690, which leads to a higher AHSG serum concentration, was significantly associated with protection against SARS development
    corecore