1,058 research outputs found

    Clustering environment of BL Lac object RGB 1745+398

    Full text link
    The BL Lac object RGB 1745+398 lies in an environment that makes it possible to study the cluster around it more deeply than the environments of other BL Lac objects. The cluster centered on the BL Lac works as a strong gravitational lens, forming a large arc around itself. The aim of this paper is to study the environment and characteristics of this object more accurately than the environments of other BL Lac objects have been before.We measured the redshifts of galaxies in the cluster from the absorption lines in their spectra. The velocity dispersion was then obtained from the redshifts. The gravitational lensing was used for measuring the mass at the center of the cluster. The mass of the whole cluster could then be estimated using the softened isothermal sphere mass distribution. Finally, the richness of the cluster was determined by counting the number of galaxies near the BL Lac object and obtaining the galaxy-BL Lac spatial covariance function, BgbB_{gb}. The redshifts of nine galaxies in the field were measured to be near the redshift of the BL Lac object, confirming the presence of a cluster. The average redshift of the cluster is 0.268, and the velocity dispersion (470−110+190)(470^{+190}_{-110}) km s−1^{-1}. The mass of the cluster is M_{500}=(4^{+3}_{-2})\times10^{14} M_{\sun} which implies a rather massive cluster. The richness measurement also suggests that this is a rich cluster: the result for covariance function is Bgb=(600±200)B_{gb}=(600\pm200) Mpc1.77^{1.77}, which corresponds to Abell richness class 1 and which is consistent with the mass and velocity dispersion of the cluster.Comment: 5 pages, accepted to A&

    The Sedentary Survey of Extreme High Energy Peaked BL Lacs III. Results from Optical Spectroscopy

    Full text link
    The multi-frequency Sedentary Survey is a flux limited, statistically well-defined sample of highly X-ray dominated BL Lacertae objects (HBLs) which includes 150 sources. In this paper, the third of the series, we report the results of a dedicated optical spectroscopy campaign that, together with results from other independent optical follow up programs, led to the spectroscopic identification of all sources in the sample. We carried out a systematic spectroscopic campaign for the observation of all unidentified objects of the sample using the ESO 3.6m, the KPNO 4m, and the TNG optical telescopes. We present new identifications and optical spectra for 76 sources, 50 of which are new BL Lac objects, 18 are sources previously referred as BL Lacs but for which no redshift information was available, and 8 are broad emission lines AGNs. We find that the multi-frequency selection technique used to build the survey is highly efficient (about 90%) in selecting BL Lacs objects. We present positional and spectroscopic information for all confirmed BL Lac objects. Our data allowed us to determined 36 redshifts out of the 50 new BL Lacs and 5 new redshifts for the previously known objects. The redshift distribution of the complete sample is presented and compared with that of other BL Lacs samples. For 26 sources without recognizable absorption features, we calculated lower limits to the redshift using a method based on simulated optical spectra with different ratios between jet and galaxy emission. For a subsample of 38 object with high-quality spectra, we find a correlation between the optical spectral slope, the 1.4 GHz radio luminosity, and the Ca H&K break value, indicating that for powerful/beamed sources the optical light is dominated by the non-thermal emission from the jet.Comment: 23 pages, accepted by A&

    Experimental investigation of the edge states structure at fractional filling factors

    Full text link
    We experimentally study electron transport between edge states in the fractional quantum Hall effect regime. We find an anomalous increase of the transport across the 2/3 incompressible fractional stripe in comparison with theoretical predictions for the smooth edge potential profile. We interpret our results as a first experimental demonstration of the intrinsic structure of the incompressible stripes arising at the sample edge in the fractional quantum Hall effect regime.Comment: 5 pages, 5 figures included. Submitted to JETP Letter

    Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red

    Full text link
    Optical resonances spanning the Near and Short Infra-Red spectral regime were exhibited experimentally by arrays of plasmonic nano-particles with concave cross-section. The concavity of the particle was shown to be the key ingredient for enabling the broad band tunability of the resonance frequency, even for particles with dimensional aspect ratios of order unity. The atypical flexibility of setting the resonance wavelength is shown to stem from a unique interplay of local geometry with surface charge distributions

    A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    Full text link
    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few ÎŒ\mus with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 σ\sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ\sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.Comment: 28 page

    Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population

    Get PDF
    Biomarkers of low-grade inflammation have been associated with susceptibility to a severe infectious disease course, even when measured prior to disease onset. We investigated whether metabolic biomarkers measured by nuclear magnetic resonance (NMR) spectroscopy could be associated with susceptibility to severe pneumonia (2507 hospitalised or fatal cases) and severe COVID-19 (652 hospitalised cases) in 105,146 generally healthy individuals from UK Biobank, with blood samples collected 2007-2010. The overall signature of metabolic biomarker associations was similar for the risk of severe pneumonia and severe COVID-19. A multi-biomarker score, comprised of 25 proteins, fatty acids, amino acids, and lipids, was associated equally strongly with enhanced susceptibility to severe COVID-19 (odds ratio 2.9 [95%CI 2.1-3.8] for highest vs lowest quintile) and severe pneumonia events occurring 7-11 years after blood sampling (2.6 [1.7-3.9]). However, the risk for severe pneumonia occurring during the first 2 years after blood sampling for people with elevated levels of the multi-biomarker score was over four times higher than for long-term risk (8.0 [4.1-15.6]). If these hypothesis generating findings on increased susceptibility to severe pneumonia during the first few years after blood sampling extend to severe COVID-19, metabolic biomarker profiling could potentially complement existing tools for identifying individuals at high risk. These results provide novel molecular understanding on how metabolic biomarkers reflect the susceptibility to severe COVID-19 and other infections in the general population.Molecular Epidemiolog

    The OPERA experiment Target Tracker

    Get PDF
    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method

    The BL Lac objects OQ 530 and S5 0716+714. Simultaneous observations in the X-rays, radio, optical and TeV bands

    Get PDF
    We present the results of the BeppoSAX observations of two BL Lacs, OQ 530 and S5 0716+714, as part of a ToO program for the simultaneous observation at radio, optical, X-ray and TeV energies. Both sources are detected in the LECS and MECS, with S5 0716+714 visible also in the PDS band, up to about 60 keV. The X-ray spectra of both sources are better fitted by a double power-law model, with a steep soft X-ray component flattening at harder energies, with breaks at 0.3 and 1.5 keV, respectively. The concave shape of the spectra in both objects is consistent with soft X-rays being produced by the synchrotron and harder X-rays by the inverse Compton processes. Also the X-ray variability properties confirm this scenario, in particular for S5 0716+714 our observation shows variations by about a factor 3 over one hour below 3 keV and no variability above. Their simultaneous broad band energy spectral distributions can be successfully interpreted within the frame of a homogeneous synchrotron and inverse Compton model, including a possible contribution from an external source of seed photons with the different spectral states of S5 0716+714 being reproduced by changing the injected power. The resulting parameters are fully consistent with the two sources being intermediate objects within the "sequence" scenario proposed for blazars.Comment: 10 pages, 8 figures, accepted by A&
    • 

    corecore