150 research outputs found

    Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status.

    Get PDF
    We evaluated homologous recombination deficient (HRD) phenotypes in epithelial ovarian cancer (EOC) considering BRCA1, BRCA2, and RAD51C in a large well-annotated patient set. We evaluated EOC patients for germline deleterious mutations (n = 899), somatic mutations (n = 279) and epigenetic alterations (n = 482) in these genes using NGS and genome-wide methylation arrays. Deleterious germline mutations were identified in 32 (3.6%) patients for BRCA1, in 28 (3.1%) for BRCA2 and in 26 (2.9%) for RAD51C. Ten somatically sequenced patients had deleterious alterations, six (2.1%) in BRCA1 and four (1.4%) in BRCA2. Fifty two patients (10.8%) had methylated BRCA1 or RAD51C. HRD patients with germline or somatic alterations in any gene were more likely to be high grade serous, have an earlier diagnosis age and have ovarian and/or breast cancer family history. The HRD phenotype was most common in high grade serous EOC. Identification of EOC patients with an HRD phenotype may help tailor specific therapies.This work was supported by National Institutes of Health grants R01-CA122443, P50-CA136393, P30-CA15083, and the Fred C. and Katherine B. Andersen Foundation. We thank Gary Kenney, M.D. for pathology review of tumor tissue. We thank Craig Luccarini, Caroline Baynes from University of Cambridge for assisting our sample sequencing

    Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism

    Get PDF
    Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino acid metabolism, modulate cytokine/chemokine release and reduce interferon signalling, oxidative stress and the release of viral particles. Of the three isomers, citraconate is the strongest electrophile and nuclear factor-erythroid 2-related factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of itaconate by cis-aconitate decarboxylase (ACOD1), probably by competitive binding to the substrate-binding site. These results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate as the first naturally occurring ACOD1 inhibitor

    Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism

    Get PDF
    Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino acid metabolism, modulate cytokine/chemokine release and reduce interferon signalling, oxidative stress and the release of viral particles. Of the three isomers, citraconate is the strongest electrophile and nuclear factor-erythroid 2-related factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of itaconate by cis-aconitate decarboxylase (ACOD1), probably by competitive binding to the substrate-binding site. These results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate as the first naturally occurring ACOD1 inhibitor. [Image: see text

    Inherited variants in regulatory T cell genes and outcome of ovarian cancer.

    Get PDF
    Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs) has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL) and sequence-based tagging single nucleotide polymorphisms (tagSNPs) for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p = 2.7×10(-5)), LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p = 4.5×10(-4), and rs3753348, p = 9.0×10(-4), respectively), and CD80 (endometrioid, rs13071247, p = 8.0×10(-4)). Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p = 0.006). An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p = 8.1×10(-4)) among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies

    Pre-Absorbed Immunoproteomics: A Novel Method for the Detection of Streptococcus suis Surface Proteins

    Get PDF
    Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics

    HER2 gene amplification and EGFR expression in a large cohort of surgically staged patients with nonendometrioid (type II) endometrial cancer

    Get PDF
    Type II endometrial cancers (uterine serous papillary and clear cell histologies) represent rare but highly aggressive variants of endometrial cancer (EC). HER2 and EGFR may be differentially expressed in type II EC. Here, we evaluate the clinical role of HER2 and EGFR in a large cohort of surgically staged patients with type II (nonendometrioid) EC and compare the findings with those seen in a representative cohort of type I (endometrioid) EC. In this study HER2 gene amplification was studied by fluorescence in situ hybridisation (FISH) and EGFR expression by immunohistochemistry. Tissue microarrays were constructed from 279 patients with EC (145 patients with type I and 134 patients with type II EC). All patients were completely surgically staged and long-term clinical follow up was available for 258 patients. The rate of HER2 gene amplification was significantly higher in type II EC compared with type I EC (17 vs 1%, P<0.001). HER2 gene amplification was detected in 17 and 16% of the cases with uterine serous papillary and clear cell type histology, respectively. In contrast, EGFR expression was significantly lower in type II compared with type I EC (34 vs 46%, P=0.041). EGFR expression but not HER2 gene amplification was significantly associated with poor overall survival in patients with type II EC, (EGFR, median survival 20 vs 33 months, P=0.028; HER2, median survival 18 vs 29 months, P=0.113) and EGFR expression retained prognostic independence when adjusting for histology, stage, grade, and age (EGFR, P=0.0197; HER2, P=0.7855). We conclude that assessment of HER2 gene amplification and/or EGFR expression may help to select type II EC patients who could benefit from therapeutic strategies targeting both HER2 and EGFR

    Prognostic gene expression signature for high-grade serous ovarian cancer.

    Get PDF
    BACKGROUND: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS: Expression levels of 276 genes were associated with OS (false discovery rate \u3c 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P \u3c 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P \u3c 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches

    Prognostic gene expression signature for high-grade serous ovarian cancer

    Get PDF
    BACKGROUND:Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS:Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS:Expression levels of 276 genes were associated with OS (false discovery rate &lt; 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P &lt; 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P &lt; 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION:The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches
    • …
    corecore