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Background: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is w4 years, yet
survival varies widely between patients. There are no well-established, gene expression signatures associated with
prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC.
Patients and methods: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates,
was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769
women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a
prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of
1067 tumours from six studies.
Results: Expression levels of 276 genes were associated with OS (false discovery rate < 0.05) in covariate-adjusted
single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P < 0.001). The best
performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of
one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death
[hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02e2.71; P < 0.001]. Median survival [HR (95% CI)] by gene
expression score quintile was 9.5 (8.3 to e), 5.4 (4.6e7.0), 3.8 (3.3e4.6), 3.2 (2.9e3.7) and 2.3 (2.1e2.6) years.
Conclusion: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene
expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to
achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the
development of targeted therapeutic approaches.
Key words: formalin-fixed paraffin-embedded, gene expression, high-grade serous ovarian cancer, overall survival,
prognosis

INTRODUCTION

Epithelial ovarian cancer (EOC) causes w125 000
deaths globally every year, and long-term survival rates
have changed little in the past three decades.1

Approximately 70% of women with EOC are diagnosed
with advanced stage disease (stages III/IV), and fewer
than 50% will survive more than 5 years.2 There are
five major EOC histotypes: high-grade serous, low-grade
serous, endometrioid, clear cell and mucinous.3 High-
grade serous ovarian cancer (HGSOC) comprises about
two-thirds of cases, is responsible for most deaths and
is characterized by profound genomic and clinical
heterogeneity.

The most informative prognostic factors for HGSOC are
International Federation of Gynecology and Obstetrics (FIGO)
stage, residual disease following debulking surgery,4 BRCA1 or
BRCA2 germline mutation5,6 and tumour-infiltrating
lymphocyte scores.7,8 Patients with HGSOC who carry a
loss-of-function germline mutation in BRCA1 or BRCA2 have
an increased sensitivity to platinum-based chemotherapy and
PARP inhibitor treatment9,10 and a medium-term survival
advantage.5 However, the frequent development of drug-
resistant disease6 limits the effectiveness of current therapies.

Gene expression data have been used to define four
tumour molecular subtypes of HGSOC (C1/mesenchymal,
C2/immune, C4/differentiated and C5/proliferative).11,12
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Using transcriptome-wide data from fresh frozen tissues,
The Cancer Genome Atlas (TCGA) project used 215 tumours
to identify an overall survival (OS) expression signature of
193 genes that has been validated on three other HGSOC
gene expression datasets.12

Despite these findings, gene expression biomarkers have
not been implemented clinically owing to several important
shortcomings. The majority of the individual markers
comprising the 193 gene signature were not statistically
significant across all studies, suggesting that the signature
may not be robust. The sample sizes in other discovery ef-
forts have been too small for robust statistical inference.12

In addition, previous studies used fresh frozen samples,
resulting in logistic and cost barriers to examining large
clinically relevant datasets, and translation to the clinical
setting.

The aim of this study was to identify a robust and clinic-
ready prognostic HGSOC profile that can be applied to
formalin-fixed paraffin-embedded (FFPE) tumour tissue.

PATIENTS AND METHODS

Twenty studies provided pretreatment FFPE tumour sam-
ples from 4071 women diagnosed with HGSOC
(supplementary Table S1, available at Annals of Oncology
online). All HGSOC cases with available tissue were
included. During this period, patients with HGSOC were
treated with chemotherapy (carboplatin and paclitaxel) af-
ter primary debulking surgery. Study protocols were
approved by the respective Institutional Review Board/
Ethics Approval Committee for each site (supplementary
Table S1, available at Annals of Oncology online).

A schematic of the overall study design is shown in
Figure 1. There were four main components: gene selection,
gene expression assay, development of prognostic gene
signature in a training set and validation of prognostic
signature in an independent validation set.

Gene selection

Candidate prognostic genes were identified by carrying out
an individual participant meta-analysis of six transcriptome-
wide microarray studies,11e16 which included tumour
samples from 1455 participants. Association of gene
expression with OS was evaluated by Cox proportional
hazards regression adjusted for molecular subtype
(supplementary Table S2, available at Annals of Oncology
online). In total, 200 genes from the meta-analysis, most
achieving a permutation-based false discovery rate (FDR)17

of <0.05, and an additional 313 candidate genes based on
the literature and unpublished data were selected
(supplementary Tables S3 and S4, and supplementary
Figure S1, available at Annals of Oncology online; for
more details see supplementary Material, available at
Annals of Oncology online). Five genes, RPL19, ACTB, PGK1,
SDHA and POLR1B, were included as house-keeping genes
for normalization.

Gene expression assay in tumour samples from study
participants

FFPE tumour samples were processed with the NanoString
nCounter technology at three different locations: Vancouver,
Los Angeles and Melbourne. A control set of 48 FFPE tumour
samples was run at each location and the average intraclass
correlation coefficient was 0.987. Approximately 2% of the
samples were run in duplicate and the average Spearman’s
correlation coefficient rs was 0.995. Single-patient classifi-
cation methods were used with reference samples to control
for batch effects.18 The data in this publication have been
deposited in NCBI’s Gene Expression Omnibus19; GEO Series
accession number GSE132342 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc¼GSE132342). A total of 3329
samples passed quality control of which 3769 had survival
data and assessable gene expression for 513 genes. Data can
be found in NCBI GEO: Accession numbers GSE132342 and
GPL26748.

Overall survival analysis of individual genes

Samples that contributed to the meta-analysis dataset (n ¼
211) were removed from subsequent selected analyses to
enforce independence of study samples between the gene
selection and final survival analysis. Time-to-event analyses
were carried out for OS with right censoring at 10 years and
left truncation of prevalent cases. Associations between
log-transformed normalized gene expression and survival
time were tested using likelihood ratio tests with Cox pro-
portional hazards models adjusted for age, race and stage,
and stratified by study. Patients with missing race or stage
information were assigned to ‘unknown’ categories. Age
was modelled using a B-spline with a knot at the median
age, which yielded a better fit than using knots at quartiles
or categorical variables. Stage was dichotomized into early
(FIGO stage I/II) and advanced (FIGO stage III/IV). Genes
were scaled to have a standard deviation of one, so hazard
ratios (HRs) correspond to a change of one standard devi-
ation. A BenjaminieHochberg FDR of <0.05 was used to
identify notable associations. Because the expression of
genes can be correlated, an analysis of correlated genes was
performed using data from TCGA. Advanced stage ovarian
cancer usually has disease spread throughout the abdomen,
and therefore sensitivity analyses were performed to assess
effects of the anatomical location of tumour samples
included in the study by removing observations corre-
sponding to samples known to be extraovarian (n ¼ 437).

Prognostic signature development and validation

Studies were initially randomized to training set (N ¼ 14)
and validation set (N ¼ 6). The TRI study was randomized to
the validation set, but, because 107 samples were part of
the meta-analysis data used for gene selection, the study
was split, so those 107 samples were included in the model
training dataset. Thus 2702 samples from 15 studies were
used for model training and 1067 samples from 6 studies
were used for validation (supplementary Table S1, available
at Annals of Oncology online). In the training set, four
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Figure 1. Schematic of study design.
*The TRI study was split across the training and validation sets due to 107 samples overlapping with the meta-analysis. GWAS, genome-wide association studies; HGSOC, high-grade serous ovarian cancer.
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modelling approaches (stepwise regression, elastic net
regularized regression, boosting and random survival for-
ests) were applied to construct competing gene
expressionebased biomarkers. Each was evaluated in the
training data using 10-fold cross-validation for its prognostic
value for OS at 2 and 5 years of follow-up using an area
under the curve (AUC) measure derived from receiver
operator characteristic analysis (see supplementary
Material, available at Annals of Oncology online, for addi-
tional details). The best performing method, elastic net
regularized regression, was applied to the full training set to
determine the final gene signature and scoring method,
which was then evaluated using the independent testing
set. All models were constrained to include age and stage,
where age was modelled as categorical based on quartiles
of the training dataset with groups aged <53, 53e59, 60e
66, and �67. Stage was modelled as described earlier for
the OS individual gene analysis.

RESULTS

Association of expression of individual genes with OS in
HGSOC

In a gene-by-gene analysis of the full dataset adjusted for
age, race and stage, and stratified by study, 276 of the 513
selected genes were associated with OS (FDR < 0.05). Of
these, 138 were selected from the meta-analysis of six
published microarray studies (supplementary Table S2,
available at Annals of Oncology online)11e16 and 144 from
candidate gene approaches (supplementary Tables S5 and
S6, available at Annals of Oncology online). HRs for one
standard deviation change in gene expression ranged from
0.84 to 1.19, with multiple genes exhibiting associations at
very stringent significance levels (e.g. 19 genes with P <
1 �10�8; supplementary Tables S5 and S6, available at
Annals of Oncology online). The five most significant genes
were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (Table 1). We
did not find extensive evidence of high co-expression be-
tween these five genes and genes measured in TCGA project
(supplementary Table S7, available at Annals of Oncology
online). In sensitivity analyses we found that excluding
samples from omentum and other extra-ovarian sites did
not substantially affect the results (supplementary Tables S8
and S9, available at Annals of Oncology online).

Development of a novel prognostic gene signature

The four predictive modelling approaches that were evalu-
ated in the training data using 10-fold cross-validation
yielded median AUCs that ranged from 0.69 to 0.73 for 2-
year OS and 0.69 to 0.74 for 5-year survival
(supplementary Figure S2, available at Annals of Oncology
online) with better prediction of 5-year OS than of 2-year
OS. The elastic net approach yielded the highest median
AUC for both 2- and 5-year OS and was selected for final
development of the signature. Using the model on the full
training dataset resulted in a prognostic signature of 101
genes in addition to age and stage (supplementary
Table S10, available at Annals of Oncology online). Of
these, 66 genes were associated with OS (FDR < 0.05) in
the single gene models. There was no obvious subset of
signature genes that performed as well or nearly as well as
the full 101 gene signature (supplementary Figure S3,
available at Annals of Oncology online).

Performance of the signature including age and stage was
AUC 0.69 [95% confidence interval (CI) 0.65e0.73] and AUC
0.75 (95% CI 0.72e0.78) for 2- and 5-year OS, respectively
(Figures 2 and 3; supplementary Figure S4, available at
Annals of Oncology online). This was substantially better
than age and stage alone with AUC 0.61 (95% CI 0.57e0.65)
and AUC 0.62 (95% CI 0.59e0.67) for 2- and 5-year OS,
respectively, particularly for the 5-year OS outcome with
non-overlapping 95% CI. One standard deviation change in
the gene expression score was associated with an HR of
2.35 [(95% CI 2.02e2.71); P ¼ 5.1 � 10�31], and median
survival [HR (CI)] varied substantially across quintiles of the
gene expression score [9.5 (8.3 to e), 5.4 (4.6e7.0), 3.8
(3.3e4.6), 3.2 (2.9e3.7) and 2.3 (2.1e2.6) years, respec-
tively, from smallest to largest quintile (Q1-Q5); Table 2].

For a subset of cases, there was clinical and experimental
data for known prognostic factors. All samples had molec-
ular subtype classification (Talhouk et al.20); residual disease
was known for 1771 cases, primary chemotherapy treat-
ment for 687, germline BRCA mutation status for 904 and
nuclear CD8 tumour-infiltrating lymphocyte counts8 for
1111 (supplementary Table S11, available at Annals of
Oncology online). When examined by quintile of gene
expression score there were differences, as expected, for
each of the known prognostic factors, including age and
stage that were included in the model (Table 3). However,
in sensitivity analyses, applying the signature to specific

Table 1. Hazard ratios and 95% CIs for top five prognostic genes in covariate-adjusted single-gene analyses

Gene HR (95% CI) P Selection Correlated genea rs

TAP1 0.84 (0.80e0.87) 8.3 � 10�18 Meta PSMB9 0.89
ZFHX4 1.19 (1.14e1.25) 1.4 � 10�15 Meta LOC100192378 0.74
CXCL9 0.85 (0.82e0.88) 1.8 � 10�15 Meta and candidate CXCR6 0.89
FBN1 1.18 (1.13e1.24) 4.2 � 10�14 Candidate SPARCb 0.91
PTGER3 1.18 (1.13e1.24) 1.2 � 10�13 Meta COL8A1 0.67

CI, confidence interval; HR, hazard ratio.
a Most correlated gene according to Spearman’s rank correlation coefficient, rs, computed in The Cancer Genome Atlas (TCGA) Ovarian Serous Cystadenocarcinoma RNA-seq
dataset.
b SPARC was included in this project and was less significant.

Annals of Oncology J. Millstein et al.

1244 https://doi.org/10.1016/j.annonc.2020.05.019 Volume 31 - Issue 9 - 2020

https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019
https://doi.org/10.1016/j.annonc.2020.05.019


patient groups, a robustness of stratification was demon-
strated, suggesting that the prognostic power of the
signature is not explained by the individual factors, residual
disease, treatment, BRCA status or CD8 score (Figure 3 and
supplementary Figures S5eS7, available at Annals of
Oncology online). The signature score showed modest dif-
ferences by molecular subtype (supplementary Figure S8,
available at Annals of Oncology online), and adjusting for
molecular subtype in the Cox analysis resulted in only minor
changes to the HR estimates for signature quintiles
(Table 2). The signature was shown to be prognostic within
a homogenous group of 316 stage IIIC cases with no re-
sidual disease, within early stage cases (FIGO IA and IB) and
within patients whose samples were collected from the
omentum (supplementary Figures S9 and S10, available at
Annals of Oncology online). Analysis of the signature score
for paired ovarian and omental tissue from 42 of the cases
showed a highly significant Pearson’s correlation coefficient,
r ¼ 0.79 (P ¼ 5.4 � 10�10; supplementary Figure S11,
available at Annals of Oncology online).

A gene set enrichment analysis was performed for the
101 genes in the signature, as well as for genes correlated
with signature genes achieving r2 > 0.75 (supplementary
Table S12, available at Annals of Oncology online). For the
correlated gene analysis, the three most significant path-
ways involved the immune system, including the adaptive
immune system and cytokine signalling. A further 10 im-
mune pathways were significantly enriched and included
interferon signalling, innate immune system and TCR sig-
nalling and antigen presentation pathways. Restricting to
the signature genes only, there was also enrichment in the
immune system, but the top two pathways were PI-3K
(phosphoinositide 3-kinase) cascade and GPCR (G

proteinecoupled receptor) ligand binding. Four other
pathways were related to the cell cycle and mitosis, with
the remaining enriched for fibroblast growth factor receptor
(FGFR) and epidermal growth factor receptor (ERBB) sig-
nalling, and one pathway related to homologous combina-
tion repair.

DISCUSSION

In a large-scale study of patients with HGSOC, we identified
a 101-gene expression signature able to predict clinically
relevant differences in OS. Using methods that are both
economical and applicable to standard clinical sampling
techniques, we showed that the signature performs sub-
stantially better than age and stage alone for prognosis of
both 2- and 5-year OS. The number of patients and samples
included in this study is an order of magnitude greater than
previous comparable studies of gene expression and OS in
patients with HGSOC.12,21,22 Thus, we have been able to
more precisely quantify the prognostic value of gene
expression.

We report definitive associations between OS and
expression of 276 genes. Of the five most significant genes
(TAP1, ZFHX4, CXCL9, FBN1 and PTGER3), four have been
previously reported to be associated with survival in
HGSOC. The top prognostic gene, TAP1, is involved in the
antigen-presenting pathway. Expression was reduced in
metastatic HGSOC, positively associated with OS,23 as
observed here, and linked to tumour regression in response
to treatment.24 Further, hypomethylation of TAP1 was
associated with improved time to disease recurrence.25

CXCL9 is a chemokine that mediates the recruitment of T
cells to solid tumours.26 High expression of intratumoural
CXCL9 was associated with higher OS27 and higher lym-
phocytic infiltration, which is also a robust prognostic factor
in HGSOC8,11,28 and a feature of the immunoreactive
HGSOC molecular subtype.11 CXCL9 has also been proposed
as a therapeutic target due to evidence that it inhibits
angiogenesis and promotes antitumour adaptive immu-
nity.29e31 Strikingly, the signature was able to further refine
prognostic groups within patients with high tumour-
infiltrating lymphocyte counts suggesting that CXCL9 and
TAP1 expression may be strong indicators of immune
competency in HGSOC.

FBN1 is an extracellular matrix protein previously found
to be a biomarker associated with early recurrence in pa-
tients with ovarian cancer who are initially sensitive to
chemotherapy32 and strongly correlated with desmoplasia
in HGSOC. The prostaglandin E2 receptor PTGER3 is
expressed in ovarian tumour cells and is associated with
relapse-free survival.33 By contrast, ZFHX4 does not have
previous associations with HGSOC.

Associations between the expression of specific genes in
tumour tissues and OS in patients with HGSOC may suggest
new drug targets and lead to insights into biological varia-
tion in treatment response. For example, cases in the Q5
quintile with the poorest outcome had increased expression
of IGF2, FGFR1 and MYC, a possible argument for the use of
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Figure 2. Receiver operator characteristic (ROC) curves for prognostic per-
formance of the gene expression signature in independent high-grade serous
ovarian cancer patients (testing data).
There was no overlap between studies or patient data used to develop models
(training data) and construct ROC curves and calculate area under the curve
(AUC) values shown here (testing data). All models included age and stage as
described in Methods section. TP denotes the true positive rate (sensitivity) and
FP denotes the false positive rate (1 � specificity).
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IGFR1, FGFR, bromodomain (MYC) or a combination of
PARP and CDK4/6 inhibitors (MYC).34 More immediately,
the signature may help clinicians identify patients most in
need of intervention, such as patients that could potentially
benefit from neoadjuvant chemotherapy (NACT). Alterna-
tively, in clinical trials it could be used to stratify randomi-
zation by patients’ risk, thereby reducing heterogeneity
within subgroups and increasing heterogeneity between

subgroups. The signature will be incorporated into future
prospective clinical trials to determine if it can predict
response to specific treatments.

Measurement of the signature required standard FFPE
tissue used in routine histopathology. In addition, data
preprocessing and normalization were conducted on an
individual level, thus translatable to a general patient
population. That is, 5-year OS prognosis of future patients

Table 2. Hazard ratios and 95% CIs for quintiles of the gene expression signature score in validation data

Quintile N Deaths Median survivala HR (95% CI) Adjusted for age and stage Adjusted for molecular
subtype age and stage

HR (95% CI) HR (95% CI)

Q1 214 81 9.47 (8.32 to e) 0.44 (0.33e0.58) 0.34 (0.22e0.55) 0.37 (0.23e0.59)
Q2 213 117 5.38 (4.63e6.97) 0.73 (0.57e0.93) 0.71 (0.55e0.91) 0.74 (0.58e0.96)
Q3 213 145 3.80 (3.34e4.60)
Q4 213 158 3.23 (2.85e3.68) 1.56 (1.25e1.96) 1.56 (1.24e1.97) 1.56 (1.24e1.96)
Q5 214 179 2.27 (2.09e2.62) 2.23 (1.78e2.78) 2.11 (1.67e2.67) 2.07 (1.63e2.61)

CI, confidence interval; HR, hazard ratio.
a Median survival (95% CI) in years for patients in the validation set.

Figure 3. KaplaneMeier curves of overall survival for patients (A) in the training and (B) testing sets.
Patients were assigned to quintiles (Q1eQ5) of the signature score including age and stage. Shaded areas indicate 95% confidence regions, only included for plots
representing larger sample sizes. Because of limited sample size, the following plots represent all such patients in the entire dataset, training or testing: (C) no
macroscopic residual disease after debulking surgery, (D) primary chemotherapy treatment �4 cycles of intravenous (IV) carboplatin area under the curve (AUC) 5 or 6
and paclitaxel 135 or 175 mg/m2 every 3 weeks (actual dose known or presumed), (E) BRCA1 or BRCA2 germline mutation and (F) CD8 > 19.
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can be evaluated against the patient population reported
here by (i) following the same steps described here for
generating the normalized gene expression data, (ii)
computing an individual signature score and (iii) assigning
an HR based on the score or comparing it with the reported
quintiles (supplementary Material, available at Annals of
Oncology online). NanoString gene expression is highly
reproducible as seen by our quality control metrics
(supplementary Material, available at Annals of Oncology
online) and the FDA approval of the Prosigna test for breast
cancer.

The question of heterogeneity by ancestry or ethnicity
was beyond the scope of this study but should be pursued
in future research. Another important question is whether
molecular subtype can improve biomarker performance. A
substantial proportion of signature genes were identified by
the subtype-adjusted meta-analysis, suggesting that the
strong performance of the signature is not solely attribut-
able to differences among molecular subtypes. In addition,
all of the individual genes used in the molecular subtype
classification were included in development of the
signature.

Although the cases received chemotherapy, the FFPE
samples used in this study were chemo-naïve, as few

patients had NACT during the calendar period in which
these samples were collected. Because the signature ap-
pears to be prognostic in omentum samples, future studies
may assess the value in NACT patients, using pretreatment
omental biopsies or post-treatment tumour samples. Future
work will also address if the signature can predict platinum-
refractory patients.

We have developed a robust prognostic signature for
HGSOC that can be used to stratify patients and identify
those in need of alternative treatments. Gene set enrich-
ment analysis applied to the signature indicates an impor-
tant role for the immune system in OS and supports further
investigation of immune therapy in ovarian cancer. More
generally, the identification here of high-confidence prog-
nostic genes may lead to new hypotheses for targeted
treatments.
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