231 research outputs found

    Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt

    Full text link
    Abstract Background There is now compelling evidence that epigenetic modifications link adult disease susceptibility to environmental exposures during specific life stages, including pre-pubertal development. Animal studies indicate that bisphenol A (BPA), the monomer used in epoxy resins and polycarbonate plastics, may impact health through epigenetic mechanisms, and epidemiological data associate BPA levels with metabolic disorders, behavior changes, and reproductive effects. Thus, we conducted an environmental epidemiology study of BPA exposure and CpG methylation in pre-adolescent girls from Gharbiah, Egypt hypothesizing that methylation profiles exhibit exposure-dependent trends. Methods Urinary concentrations of total (free plus conjugated) species of BPA in spot samples were quantified for 60 girls aged 10 to 13. Genome-wide CpG methylation was concurrently measured in bisulfite-converted saliva DNA using the Infinium HumanMethylation27 BeadChip (N = 46). CpG sites from four candidate genes were validated via quantitative bisulfite pyrosequencing. Results CpG methylation varied widely among girls, and higher urinary BPA concentrations were generally associated with less genomic methylation. Based on pathway analyses, genes exhibiting reduced methylation with increasing urinary BPA were involved in immune function, transport activity, metabolism, and caspase activity. In particular, hypomethylation of CpG targets on chromosome X was associated with higher urinary BPA. Using the Comparative Toxicogenomics Database, we identified a number of candidate genes in our sample that previously have been associated with BPA-related expression change. Conclusions These data indicate that BPA may affect human health through specific epigenomic modification of genes in relevant pathways. Thus, epigenetic epidemiology holds promise for the identification of biomarkers from previous exposures and the development of epigenetic-based diagnostic strategies.http://deepblue.lib.umich.edu/bitstream/2027.42/112909/1/12940_2013_Article_648.pd

    Airway dilation in bronchiolitis obliterans after allogeneic hematopoietic stem cell transplantation

    Get PDF
    SummaryRationaleBronchiolitis obliterans syndrome (BOS) is a late, non-infectious pulmonary complication following hematopoietic stem cell transplantation (HSCT). There is minimal data published on quantitative radiologic characterization of airway remodeling in these subjects.ObjectivesTo examine quantitative measurements of airway morphology and their correlation with lung function in a cohort of patients who underwent HSCT and developed BOS.MethodsAll adult patients who underwent allogeneic HSCT at the Dana-Farber Cancer Institute/Brigham and Women's Hospital (n = 1854) between January 1st 2000 and June 30th 2010 were screened for the development of BOS. Clinically acquired high resolution CT (HRCT) scans of the chest were collected. For each subjects discrete measures of airway wall area were performed and the square root of wall area of a 10-mm luminal perimeter (Pi10) was calculated.Measurements and main resultsWe identified 88 cases of BOS, and 37 of these patients had available HRCT. On CT scans obtained after BOS diagnosis, the Pi10 decreased (consistent with airway dilation) as compared with pre-BOS values (p < 0.001). After HSCT the Pi10 correlated with FEV1% predicted (r = 0.636, p < 0.0001), and RV/TLC% predicted (r = −0.736, p < 0.0001), even after adjusting for age, sex and total lung capacity (p < 0.0001 for both).ConclusionsOn HRCT scan BOS is characterized by central airway dilation, the degree of which is correlated to decrements in lung function. This is opposite of what has been previously demonstrated in COPD and asthma that quantitative measure of proximal airway wall thickening directly correlate with pulmonary function. Our data suggests that the pathologic process affecting the central airways is different from the pathology observed in the distal airways. Further work is needed to determine if such change can be used as a sensitive and specific tool for the future diagnosis and staging of BOS

    A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage

    Get PDF
    In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi) is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP) signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE) RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit—from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger

    GLUT1 gene is a potential hypoxic marker in colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor hypoxia is an important factor related to tumor resistance to radiotherapy and chemotherapy. This study investigated molecules synthesized in colorectal cancer cells during hypoxia to explore the possibility of developing molecular probes capable of detecting cell death and/or the efficiency of radiotherapy and chemotherapy.</p> <p>Methods</p> <p>At first, we incubated two human colorectal adenocarcinoma cell lines SW480 (UICC stage II) and SW620 (UICC stage III) cells in hypoxic (≤2% O<sub>2</sub>, 93% N<sub>2</sub>, and 5% CO<sub>2</sub>) and normoxic conditions (20% O<sub>2</sub>, 75% N<sub>2</sub>, and 5% CO<sub>2</sub>) for 24 h and 48 h. The relative expression ratio of GLUT1 mRNA in hypoxic conditions was analyzed by RT-PCR. Ten cancerous tissues collected from human colorectal cancer patients were examined. HIF-1α and HIF-2α levels were measured to indicate the degree of hypoxia, and gene expression under hypoxic conditions was determined. As a comparison, HIF-1α, HIF-2α, and GLUT1 levels were measured in the peripheral blood of 100 CRC patients.</p> <p>Results</p> <p>Hypoxia-induced lactate was found to be elevated 3.24- to 3.36-fold in SW480 cells, and 3.06- to 3.17-fold in SW620 cells. The increased relative expression ratio of GLUT1 mRNA, under hypoxic conditions was higher in SW620 cells (1.39- to 1.72-fold elevation) than in SW480 cells (1.24- to 1.66-fold elevation). HIF-1α and HIF-2α levels were elevated and GLUT1 genes were significantly overexpressed in CRC tissue specimens. The elevated ratio of GLUT1 was higher in stage III and IV CRC tissue specimens than in the stage I and II (2.97–4.73 versus 1.44–2.11). GLUT1 mRNA was also increased in the peripheral blood of stage II and III CRC patients as compared to stage I patients, suggesting that GLUT1 may serve as a hypoxic indicator in CRC patients.</p> <p>Conclusion</p> <p>In conclusion, this study demonstrated that GLUT1 has the potential to be employed as a molecular marker to indicate the degree of hypoxia experienced by tumors circulating in the blood of cancer patients.</p

    Can metabolic plasticity be a cause for cancer? Warburg–Waddington legacy revisited

    Get PDF
    Fermentation of glucose to lactate in the presence of sufficient oxygen, known as aerobic glycolysis or Warburg effect, is a universal phenotype of cancer cells. Understanding its origin and role in cellular immortalization and transformation has attracted considerable attention in the recent past. Intriguingly, while we now know that Warburg effect is essential for tumor growth and development, it is thought to arise because of genetic and/or epigenetic changes. In contrast to the above, we propose that Warburg effect can also arise due to normal biochemical fluctuations, independent of genetic and epigenetic changes. Cells that have acquired Warburg effect proliferate rapidly to give rise to a population of heterogeneous progenitors of cancer cells. Such cells also generate more lactate and alter the fitness landscape. This dynamic fitness landscape facilitates evolution of cancer cells from its progenitors, in a fashion analogous to Darwinian evolution. Thus, sporadic cancer can also occur first by the acquisition of Warburg effect, then followed by mutation and selection. The idea proposed here circumvents the inherent difficulties associated with the current understanding of tumorigenesis, and is also consistent with many experimental and epidemiological observations. We discuss this model in the context of epigenetics as originally enunciated by Waddington

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Defining the Molecular Basis of Tumor Metabolism: a Continuing Challenge Since Warburg's Discovery

    Get PDF
    Cancer cells are the product of genetic disorders that alter crucial intracellular signaling pathways associated with the regulation of cell survival, proliferation, differentiation and death mechanisms. the role of oncogene activation and tumor suppressor inhibition in the onset of cancer is well established. Traditional antitumor therapies target specific molecules, the action/expression of which is altered in cancer cells. However, since the physiology of normal cells involves the same signaling pathways that are disturbed in cancer cells, targeted therapies have to deal with side effects and multidrug resistance, the main causes of therapy failure. Since the pioneering work of Otto Warburg, over 80 years ago, the subversion of normal metabolism displayed by cancer cells has been highlighted by many studies. Recently, the study of tumor metabolism has received much attention because metabolic transformation is a crucial cancer hallmark and a direct consequence of disturbances in the activities of oncogenes and tumor suppressors. in this review we discuss tumor metabolism from the molecular perspective of oncogenes, tumor suppressors and protein signaling pathways relevant to metabolic transformation and tumorigenesis. We also identify the principal unanswered questions surrounding this issue and the attempts to relate these to their potential for future cancer treatment. As will be made clear, tumor metabolism is still only partly understood and the metabolic aspects of transformation constitute a major challenge for science. Nevertheless, cancer metabolism can be exploited to devise novel avenues for the rational treatment of this disease. Copyright (C) 2011 S. Karger AG, BaselFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed ABC UFABC, CCNH, Santo Andre, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Ciencias Biol, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Bioquim, São Paulo, BrazilUniv Fed Sao Carlos UFSCar, DFQM, Sorocaba, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Ciencias Biol, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Bioquim, São Paulo, BrazilFAPESP: 10/16050-9FAPESP: 10/11475-1FAPESP: 08/51116-0Web of Scienc
    • …
    corecore