212 research outputs found

    Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting

    Get PDF
    Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH

    Applications and data analysis of next-generation sequencing

    Get PDF
    Over the past 6 years, next-generation sequencing (NGS) has been established as a valuable high-throughput method for research in molecular genetics and has successfully been employed in the identification of rare and common genetic variations. Although the high expectations regarding the discovery of new diagnostic targets and an overall reduction of cost have been achieved, technological challenges in instrument handling, robustness of the chemistry, and data analysis need to be overcome. Each workflow and sequencing platform have their particular problems and caveats, which need to be addressed. Regarding NGS, there is a variety of different enrichment methods, sequencing devices, or technologies as well as a multitude of analyzing software products available. In this manuscript, the authors focus on challenges in data analysis when employing different target enrichment methods and the best applications for each of the

    Amp-PCR: Combining a Random Unbiased Phi29-Amplification with a Specific Real-Time PCR, Performed in One Tube to Increase PCR Sensitivity

    Get PDF
    In clinical situations where a diagnostic real-time PCR assay is not sensitive enough, leading to low or falsely negative results, or where detection earlier in a disease progression would benefit the patient, an unbiased pre-amplification prior to the real-time PCR could be beneficial. In Amp-PCR, an unbiased random Phi29 pre-amplification is combined with a specific real-time PCR reaction. The two reactions are separated physically by a wax-layer (AmpliWax®) and are run in sequel in the same sealed tube. Amp-PCR can increase the specific PCR signal at least 100×106-fold and make it possible to detect positive samples normally under the detection limit of the specific real-time PCR. The risk of contamination is eliminated and Amp-PCR could replace nested-PCR in situations where increased sensitivity is needed e.g. in routine PCR diagnostic analysis. We show Amp-PCR to work on clinical samples containing circular and linear viral dsDNA genomes, but can work well on DNA of any origin, both from non-cellular (virus) and cellular sources (bacteria, archae, eukaryotes)

    Global and regional development of the human cerebral cortex:Molecular architecture and occupational aptitudes

    Get PDF
    We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade—albeit in a very limited manner—to behaviors as complex as the choice of one’s occupation

    DNA Topoisomerase und ihre Bedeutung für die Konformation von DNA

    No full text

    Molecular cloning of DNA

    No full text
    Biochemical, biophysical and genetic studies of DNA segments of complex genomes are greatly facilitated by a variety of techniques, called molecular cloning of DNA, which permit propagation of single DNA segments of virtually any origin in bacterial cells. Molecular cloning requires in vitro recombination of DNA fragments with a prokaryotic genetic element (a plasmid or a bacteriophage DNA) which serves as replication vehicle (also called vector) in the bacterial host. The experimental conditions allow the production of bacterial clones each harboring a single fragment of exogeneous DNA out of an initially highly heterogeneous mixture of fragments. The following steps are involved: foreign DNA is first dissected into small pieces of up to some 17 000 basepairs in length. The fragments are then joined in vitro to the vector molecules by means of well characterized DNA enzymes. The resulting recombinant molecules are introduced into the host cells by a transformation or transfection step. Among the progeny of transformed or transfected cells those clones are selected which carry a fragment of interest. Selection is in most cases accomplished by a combination of genetic and physical methods and is based on properties of the vectors as well as on attributes of the cloned foreign DNA. It is anticipated that bacterial host cells are not only suitable for amplifying DNA but also for the expression of useful functions which originate from other, preferably higher organisms. Two questions cannot be answered conclusively at present: first, is functional expression of genes generally possible in a heterologous cellular environment, and second, if it is possible, is it always harmless or does it create, at least occasionally, a biological hazard. Besides a detailed description of the techniques developed for molecular cloning, problems connected with functional expression and biohazards are discussed. In addition, results are presented which were obtained in the recent past by applying DNA cloning procedures

    Die Gentechnologie in der Medizin

    No full text

    Die Bedeutung der Gentechnologie für die Medizin

    No full text
    corecore