1,222 research outputs found

    Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index s=1s=-1

    Full text link
    This paper is concerned with well-posedness of the Boussinesq system. We prove that the nn (n2n\ge2) dimensional Boussinesq system is well-psoed for small initial data (u0,θ0)(\vec{u}_0,\theta_0) (u0=0\nabla\cdot\vec{u}_0=0) either in (B,11B,1,1)×Bp,r1({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times{B}^{-1}_{p,r} or in B,1,1×Bp,1,ϵ{B^{-1,1}_{\infty,\infty}}\times{B}^{-1,\epsilon}_{p,\infty} if r[1,]r\in[1,\infty], ϵ>0\epsilon>0 and p(n2,)p\in(\frac{n}{2},\infty), where Bp,qs,ϵB^{s,\epsilon}_{p,q} (sRs\in\mathbb{R}, 1p,q1\leq p,q\leq\infty, ϵ>0\epsilon>0) is the logarithmically modified Besov space to the standard Besov space Bp,qsB^{s}_{p,q}. We also prove that this system is well-posed for small initial data in (B,11B,1,1)×(Bn2,11Bn2,1,1)({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times({B}^{-1}_{\frac{n}{2},1}\cap{B^{-1,1}_{\frac{n}{2},\infty}}).Comment: 18 page

    Regularity properties of distributions through sequences of functions

    Get PDF
    We give necessary and sufficient criteria for a distribution to be smooth or uniformly H\"{o}lder continuous in terms of approximation sequences by smooth functions; in particular, in terms of those arising as regularizations (Tϕn)(T\ast\phi_{n}).Comment: 10 page

    Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group

    Full text link
    We study Sobolev-type metrics of fractional order s0s\geq0 on the group \Diff_c(M) of compactly supported diffeomorphisms of a manifold MM. We show that for the important special case M=S1M=S^1 the geodesic distance on \Diff_c(S^1) vanishes if and only if s12s\leq\frac12. For other manifolds we obtain a partial characterization: the geodesic distance on \Diff_c(M) vanishes for M=R×N,s<12M=\R\times N, s<\frac12 and for M=S1×N,s12M=S^1\times N, s\leq\frac12, with NN being a compact Riemannian manifold. On the other hand the geodesic distance on \Diff_c(M) is positive for dim(M)=1,s>12\dim(M)=1, s>\frac12 and dim(M)2,s1\dim(M)\geq2, s\geq1. For M=RnM=\R^n we discuss the geodesic equations for these metrics. For n=1n=1 we obtain some well known PDEs of hydrodynamics: Burgers' equation for s=0s=0, the modified Constantin-Lax-Majda equation for s=12s=\frac 12 and the Camassa-Holm equation for s=1s=1.Comment: 16 pages. Final versio

    Dynamic Transitions for Quasilinear Systems and Cahn-Hilliard equation with Onsager mobility

    Full text link
    The main objectives of this article are two-fold. First, we study the effect of the nonlinear Onsager mobility on the phase transition and on the well-posedness of the Cahn-Hilliard equation modeling a binary system. It is shown in particular that the dynamic transition is essentially independent of the nonlinearity of the Onsager mobility. However, the nonlinearity of the mobility does cause substantial technical difficulty for the well-posedness and for carrying out the dynamic transition analysis. For this reason, as a second objective, we introduce a systematic approach to deal with phase transition problems modeled by quasilinear partial differential equation, following the ideas of the dynamic transition theory developed recently by Ma and Wang

    Polyharmonic approximation on the sphere

    Full text link
    The purpose of this article is to provide new error estimates for a popular type of SBF approximation on the sphere: approximating by linear combinations of Green's functions of polyharmonic differential operators. We show that the LpL_p approximation order for this kind of approximation is σ\sigma for functions having LpL_p smoothness σ\sigma (for σ\sigma up to the order of the underlying differential operator, just as in univariate spline theory). This is an improvement over previous error estimates, which penalized the approximation order when measuring error in LpL_p, p>2 and held only in a restrictive setting when measuring error in LpL_p, p<2.Comment: 16 pages; revised version; to appear in Constr. Appro

    Interpolation in variable exponent spaces

    Get PDF
    In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale

    Global Continua of Positive Equilibria for some Quasilinear Parabolic Equation with a Nonlocal Initial Condition

    Full text link
    This paper is concerned with a quaslinear parabolic equation including a nonlinear nonlocal initial condition. The problem arises as equilibrium equation in population dynamics with nonlinear diffusion. We make use of global bifurcation theory to prove existence of an unbounded continuum of positive solutions

    On the Usefulness of Modulation Spaces in Deformation Quantization

    Full text link
    We discuss the relevance to deformation quantization of Feichtinger's modulation spaces, especially of the weighted Sjoestrand classes. These function spaces are good classes of symbols of pseudo-differential operators (observables). They have a widespread use in time-frequency analysis and related topics, but are not very well-known in physics. It turns out that they are particularly well adapted to the study of the Moyal star-product and of the star-exponential.Comment: Submitte

    Stability of complex hyperbolic space under curvature-normalized Ricci flow

    Full text link
    Using the maximal regularity theory for quasilinear parabolic systems, we prove two stability results of complex hyperbolic space under the curvature-normalized Ricci flow in complex dimensions two and higher. The first result is on a closed manifold. The second result is on a complete noncompact manifold. To prove both results, we fully analyze the structure of the Lichnerowicz Laplacian on complex hyperbolic space. To prove the second result, we also define suitably weighted little H\"{o}lder spaces on a complete noncompact manifold and establish their interpolation properties.Comment: Some typos in version 2 are correcte

    Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise

    Full text link
    The paper is concerned with spatial and time regularity of solutions to linear stochastic evolution equation perturbed by L\'evy white noise "obtained by subordination of a Gaussian white noise". Sufficient conditions for spatial continuity are derived. It is also shown that solutions do not have in general \cadlag modifications. General results are applied to equations with fractional Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already been publishe
    corecore