research

Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index s=1s=-1

Abstract

This paper is concerned with well-posedness of the Boussinesq system. We prove that the nn (n2n\ge2) dimensional Boussinesq system is well-psoed for small initial data (u0,θ0)(\vec{u}_0,\theta_0) (u0=0\nabla\cdot\vec{u}_0=0) either in (B,11B,1,1)×Bp,r1({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times{B}^{-1}_{p,r} or in B,1,1×Bp,1,ϵ{B^{-1,1}_{\infty,\infty}}\times{B}^{-1,\epsilon}_{p,\infty} if r[1,]r\in[1,\infty], ϵ>0\epsilon>0 and p(n2,)p\in(\frac{n}{2},\infty), where Bp,qs,ϵB^{s,\epsilon}_{p,q} (sRs\in\mathbb{R}, 1p,q1\leq p,q\leq\infty, ϵ>0\epsilon>0) is the logarithmically modified Besov space to the standard Besov space Bp,qsB^{s}_{p,q}. We also prove that this system is well-posed for small initial data in (B,11B,1,1)×(Bn2,11Bn2,1,1)({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times({B}^{-1}_{\frac{n}{2},1}\cap{B^{-1,1}_{\frac{n}{2},\infty}}).Comment: 18 page

    Similar works

    Full text

    thumbnail-image

    Available Versions