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REGULARITY PROPERTIES OF DISTRIBUTIONS

THROUGH SEQUENCES OF FUNCTIONS

STEVAN PILIPOVIĆ, DIMITRIS SCARPALÉZOS, AND JASSON VINDAS

Abstract. We give necessary and sufficient criteria for a distribution
to be smooth or uniformly Hölder continuous in terms of approximation
sequences by smooth functions; in particular, in terms of those arising
as regularizations (T ∗ φn).

1. Introduction

In this article we provide necessary and sufficient criteria for a distribution
to be smooth or have a Hölderian type regularity. We shall substantially
refine and improve earlier results from [7, 10, 11].

One of the oldest and most useful procedures in analysis is that of reg-
ularization. It gives a way to study functions and distributions by means
of approximations by sequences of regular functions. The procedure has a
remarkable importance in the understanding of generalized functions; for
instance, it is the essence of the sequential approach to distribution theory
[1, 8]. It also plays a fundamental role for the theory of generalized func-
tion algebras [2, 3, 4, 5]. The algebras of generalized functions are usually
constructed [2, 3, 5] as quotient algebras of sequences (or nets) of smooth
functions. The distributions are then embedded, via regularization, as equiv-
alence classes of sequences. One of the most standard and critical issues in
these theories is to find out whether a given generalized function is actually
a classical “smooth” function in terms of its representative sequences. For
example, such a natural question arises when solving (singular) PDE [7, 10].
The question has also great interest from the point of view of distribution
theory.

This article is motivated by this general question, and we will provide
some answers for Hölder-Zygmund type and C∞ regularity. Our aim is to
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describe such regularity properties in terms of growth properties of approxi-
mation sequences; in particular, via regularization sequences. We state some
samples of our results. Their sharp versions will be the subject of this paper.

Throughout the article, we use the notation (φn) = (φn)n∈N for a special
δ-sequence, also called a sequence of mollifiers, that is, φn(x) = ndφ(nx),
where φ ∈ S(Rd) satisfies

∫
Rd φ(x)dx = 1, so that (φn) is an approximation

of the unity. We denote as Cα(Rd) the global Hölder space of exponent α
[6, 9, 12, 13]. The next proposition is a corollary of our Theorem 4.2.

Proposition 1.1. Let T be a distribution with compact support on an open
set Ω ⊂ Rd and let (Tn) be a regularization sequence, namely, Tn = T ∗ φn.
Let α ∈ R+\N and fix an integer k > α. A necessary and sufficient condition
for T ∈ Cα(Rd) is

(1.1) (∀m ∈ Nd, |m| ≤ k)(sup
x∈Ω
|∂mTn(x)| = O(nk−α)).

Naturally, we may have used in (1.1) the minimal value k = [α] + 1.
However, the possibility of using different values for k leads to interesting
consequences. For instance, using Proposition 1.1, one easily recovers the
ensuing characterization of distributions that are smooth functions, origi-
nally due to Oberguggenberger and so useful in the regularity analysis of
generalized solutions to partial differential equations [10].

Corollary 1.2. Let T be a distribution with compact support on an open
set Ω and let (Tn) be a regularization sequence. The distribution is smooth,
that is, T ∈ C∞(Ω), if and only if there exists s > 0 such that

(∀m ∈ Nd)(sup
x∈Ω
|∂mTn(x)| = O(ns)).

Proof. We may assume that s /∈ N. Given any k > 0, write α = k − s.
Proposition 1.1 yields T ∈ Ck−s(Rd). Since this can be done for all k, we
obtain f ∈ C∞(Rd). �

The plan of the article is as follows. We recall in Section 2 some well
known facts about Hölder-Zygmund spaces. In Section 3 we make comments
about convergence rate and growth order of approximation sequences of
distributions by functions, both concepts will play an essential role in the
rest of the article. We give our main results in Section 4. In Subsection 4.1
we present general versions of Proposition 1.1, which characterize local and
global Hölder-Zygmund regularity of distributions. Subsection 4.2 deals with
a criterion for smoothness, it extends the one given in Corollary 1.2. Finally,
we discuss other related sufficient conditions for regularity in Subsection 4.3.

1.1. Notation. We denote by Ω an open subset of Rd. We write ω ⊂⊂ Ω
if ω has compact closure contained in Ω. The integral part of α ∈ R is de-
noted as [α]. The Schwartz spaces of test functions D(Ω), E(Ω) (= C∞(Ω)),
S(Rd), and their corresponding duals, the spaces of distributions D′(Ω),
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E ′(Ω), S ′(Rd), are well known. The space of r-times continuously differen-
tiable functions on Ω is denoted as Er(Ω) (or sometimes simply as Cr(Ω)).
As in the Introduction, we fix a δ-sequence (φn), where the test function
φ ∈ S(Rd) satisfies

∫
Rd φ(x)dx = 1.

2. Hölder-Zygmund spaces

We will measure the regularity of distributions with respect to Hölder-
Zygmund spaces. For the reader’s convenience, we collect in this section
some background material about these spaces. We start with local Hölder
spaces. Let α ∈ R+ \ N, we say that f ∈ Cαloc(Ω) if f ∈ E [α](Ω) and for any
ω ⊂⊂ Ω,

(2.1) max
|m|=[α]

sup
x,t∈ω
x 6=t

|∂mf(x)− ∂mf(t)|
|x− t|α−[α]

<∞.

The global Hölder space Cα(Rd) is defined [6] by requiring (2.1) for ω = Rd
and additionally that ∂mf ∈ L∞(Rd) for |m| ≤ [α].

There are several ways to introduce the global Zygmund space Cα∗ (Rd)
[6, 9, 13]. When α ∈ R+ \ N, we have the equality Cα∗ (Rd) = Cα(Rd), but
the Zygmund spaces are actually defined for all α ∈ R. They are usually
introduced via either a dyadic Littlewood-Paley resolution [13] or a contin-
uous Littlewood-Paley decomposition of the unity [6]. However, we shall
need a more flexible definition. We follow the approach proposed in [13, p.
7, Thm. 1.7] (a continuous version of it is discussed in [12]).

Let α ∈ R and ε > 0. We consider two test functions θ1, θ ∈ S(Rd) with
the following compatibility conditions:

(2.2) |θ̂1(u)| > 0 for |u| ≤ 2ε,

(2.3) |θ̂(u)| > 0 for ε/2 ≤ |u| ≤ 2ε and

∫
Rd
xmθ(x)dx = 0 for |m| ≤ [α].

When α < 0, the vanishing requirement over the moments is dropped. We
further consider the sequence (θ2j )j∈N given by

(2.4) θ20 = θ1 while θ2j (x) = 2jdθ(2jx) for j ≥ 1.

Then, Cα∗ (Rd) is the space of all distributions T ∈ S ′(Rd) satisfying:

(2.5) ‖T‖Cα∗ (Rd) := sup
x∈Rd,0≤j

2αj |(T ∗ θ2j )(x)| <∞.

The definition and the norm (2.5) are independent of the choice of the se-
quence as long as (2.2), (2.3), and (2.4) hold. A distribution T ∈ D′(Ω) is
then said to belong to Cα∗,loc(Ω) if for all ρ ∈ D(Ω) we have ρT ∈ Cα∗ (Rd).
Clearly, Cα∗,loc(Ω) = Cαloc(Ω) whenever α ∈ R+ \ N.
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3. Sequences of smooth functions

Our goal in the next section is to describe the regularity of a distribution
in terms of approximations to it through sequences of functions. Such reg-
ularity properties will depend on two crucial issues: the rate of convergence
of the approximation and the growth order of the sequence with respect to
n. We now explain these two concepts.

3.1. Approximation of distributions via sequences. Let T ∈ D′(Ω).
We shall say that a sequence of locally integrable functions (fn) on Ω is
associated to the distribution T if limn→∞ fn = T in the weak topology of
D′(Ω), that is,

(3.1) (∀ρ ∈ D(Ω))(〈T − fn, ρ〉 = o(1), n→∞).

In many cases, the rate of approximation in (3.1) may be much better than
just o(1). It is important to keep track of this information. Let R : N→ R+

be a function such that R(n) = o(1), n→∞. We write

T − fn = O(R(n)) in D′(Ω)

if

(3.2) (∀ρ ∈ D(Ω))(〈T − fn, ρ〉 = O(R(n)), n→∞).

Example 3.1. Let T ∈ E ′(Ω). Consider the regularization sequence Tn =
(T ∗ φn)|Ω. Then, we have the approximation T −Tn = O(n−b) in D′(Ω), for

any b ∈ (0, 1]. It is possible to improve the rate of convergence in this approx-
imation formula by imposing vanishing conditions on the higher order mo-
ments of φ. It is not difficult to prove that the assumption

∫
Rd t

mφ(x)dx = 0
for each multi-index 1 ≤ |m| ≤ k, where k ∈ N, yields the better approxi-
mation rate T − Tn = O(n−b) in D′(Ω) for any b ∈ (0, k + 1].

Example 3.2. Given a distribution T and a positive function R as above,
we can always construct an associated sequence (fn) of smooth functions
that approximates T as in (3.2). Let us suppose first that T ∈ E ′(Ω). Then
fn =

(
T ∗ φR(n)

)
|Ω, where φR(n)(x) = (1/R(n))dφ(x/R(n)), satisfies (3.2).

The general case T ∈ D′(Ω) follows from a standard partition of the unity
argument.

3.2. Growth of sequences. We are interested in sequences (fn) of Ck

functions on Ω for which there exists s such that

(3.3) (∀ω ⊂⊂ Ω)(∀m ∈ Nd, |m| ≤ k)(sup
x∈ω
|∂mfn(x)| = O(ns), n→∞).

If (3.3) holds we say that the sequence is of class (k, s); furthermore, we

denote as Ek,sN (Ω) the set of all sequences of Ck functions on Ω that are
of class (k, s). The notion makes sense for k = ∞, meaning that (fn) is
a sequence of C∞ functions and that (3.3) holds for all k ∈ N. Observe

Ek,sN (Ω) ⊆ Ek
′,s′

N (Ω) whenever k′ ≤ k and s ≤ s′. The intuitive idea behind
this notation is to measure the regularity of the sequence in terms of the two
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parameters: As k increases or s decreases, the sequence becomes more “reg-
ular”. We are particularly interested in the case s > 0, because, otherwise
(fn) is associated to the zero distribution.

4. Main results: regularity through sequences

In other to motivate the results of this section, we start by giving the
following standard result.

Proposition 4.1. Let T ∈ D′(Ω) and let (fn) be a sequence of Ck functions
associated to it. Assume that

(4.1) (∀ω ⊂⊂ Ω)(∀m ∈ Nd, |m| ≤ k)(sup
x∈ω
|∂mfn(x)| = O(1)).

Then ∂mT ∈ L∞(Ω) for all |m| ≤ k. In particular, if k ≥ d, then T is a
Ck−d function on Ω.

Proof. The relation (4.1) gives that, for each |m| ≤ k and ω ⊂⊂ Ω, the
sequence ((∂mfn)|ω) is weakly∗ precompact in L∞(ω). The rest is implied
by the distributional convergence of (∂mfn) to ∂mT . �

Our aim is to weaken the growth constrains in (4.1), but in such a way
that one is still able to draw regularity conclusions about the distribution.
In order to do so, one has to compensate by strengthening the rate of con-
vergence of the sequence. Our three main results go into that direction.
Theorem 4.2 characterizes Hölder-Zygmund regularity. Theorem 4.6 gives
a criterion for smoothness that greatly improves Corollary 1.2 from the In-
troduction. Finally, Theorem 4.7 provides other sufficient conditions for
Hölder-Zygmund regularity.

4.1. Characterization of Hölder-Zygmund regularity. We now char-
acterize those compactly supported distributions that belong to a Zygmund
space. In this subsection, we restrict our attention to regularization se-
quences (T ∗ φn). Extensions of the following theorem are indicated in
Remarks 4.4 and 4.5 below, where we relax the support assumption and
obtain characterizations of Cα∗ (Rd) and Cα∗,loc(Ω).

Theorem 4.2. Let T ∈ E ′(Ω), s > 0, and let (T ∗ φn) be a regularization
sequence. Then,

((T ∗ φn)|Ω) ∈ Ek,sN (Ω)⇔ T ∈ Ck−s∗ (Rd).

Proof. Observe [6] that the partial derivatives continuously act on the Zyg-

mund spaces as ∂m : Cβ∗ (Rd) 7→ C
β−|m|
∗ (Rd). Thus, if T ∈ Ck−s∗ (Rd) then

∂mT ∈ C−s∗ (Rd) for all |m| ≤ k. We can then apply [12, Lem. 5.2, Eqn.

(5.4)] and conclude that (T ∗ φn) ∈ Ek,sN (Rd).
Assume now that ((T ∗ φn)|Ω) ∈ Ek,sN (Ω). We first show that actually

(T ∗ φn) ∈ Ek,sN (Rd). Indeed, let suppT ⊂ ω1 ⊂⊂ ω2 ⊂⊂ Ω. It suffices to
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prove that for each multi-index m ∈ Rd

(4.2) sup
x∈Rd\ω2

|(∂mT ∗ φn)(x)| = O(1), n > 1.

Let A be the distance between ω1 and ∂ω2. Find r such that

(∀ρ ∈ E(Rd))(|〈∂mT, ρ〉| < C‖ρ‖r,ω1),

where ‖ρ‖r,ω1 = supu∈ω1,|p|≤r |∂
pρ(u)|. Setting ρ(u) = ndφ(n(x − u)) and

using the fact that φ is rapidly decreasing, we obtain,

sup
x∈Rd\ω2

|(∂mT ∗ φn)(x)| < C̃ sup
x∈Rd\ω2

sup
u∈ω1

(1/n+ |x− u|)−r−d ≤ C̃A−r−d,

which yields (4.2). Next, set gn = n−s(T ∗φn). Then, (T ∗φn) ∈ Ek,sN (Rd) pre-

cisely tells us that (gn) is a bounded sequence in Ckb (Rd), the Banach space
of k-times continuously differentiable functions that are globally bounded
together with all their partial derivatives of order ≤ k. Since the inclusion
mapping Ckb (Rd) 7→ Ck∗ (Rd) is obviously continuous, we obtain that (gn) is

bounded in the Zygmund space Ck∗ (Rd). Find ε > 0 such that |φ̂(u)| > 0
for |u| ≤ 2ε. Let (θ2j ) be as in (2.2)–(2.4) (for α = k and this ε). Then,
employing the norm (2.5), there is M > 0 such that

sup
x∈Rd

1≤n, 0≤j

2kj |(gn ∗ θ2j )(x)| = sup
x∈Rd

1≤n, 0≤j

2kjn−s|(T ∗ φn ∗ θ2j )(x)| < M.

Setting n = 2j , θ̃1 = φ ∗ θ1 and θ̃ = φ ∗ θ, and noticing that the conditions
(2.2)–(2.4), with α = k − s, are fulfilled by (θ̃2j ), we have

sup
x∈Rd, 0≤j

2(k−s)j |(T ∗ θ̃2j )(x)| < M,

which in turn implies that T ∈ Ck−s∗ (Rd). �

We may reformulate Theorem 4.2 in order to privilege the role of the
Zygmund space. Corollary 4.3 gives a general form of Proposition 1.1.

Corollary 4.3. Let T ∈ E ′(Ω), α ∈ R, and let (T ∗ φn) be a regularization
sequence. If k ∈ N is such that k > α, then

T ∈ Cα∗ (Rd)⇔ ((T ∗ φn)|Ω) ∈ Ek,k−αN (Ω).

We end this subsection with two remarks.

Remark 4.4. The proof of Theorem 4.2 can be adapted to show the fol-
lowing characterization of the global Zygmund spaces. For a distribution
T ∈ S ′(Rd), one has that f ∈ Cα∗ (Rd) if and only if, given a k > α,

(∀m ∈ Nd, |m| ≤ k)( sup
x∈Rd

|∂m(T ∗ φn)(x)| = O(nk−α)).

We leave to the reader the details of such a straightforward modification
in the proof of Theorem 4.2. The result just stated improves a theorem of
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Hörmann (formulated in [7] by using the language of generalized function
algebras).

Remark 4.5. One can give a version of Corollary 4.3 that is valid for all
distributions T ∈ D′(Ω). Indeed, by using a partition of the unity, one can
construct [5, Sec. 1.2.2] regularization sequences (Tn) for any distribution

T ∈ D′(Ω) such that if T ∈ E ′(Ω) one has (Tn − T ∗ φn) ∈ E∞,−1
N (Ω). Thus,

given k > α, we obtain T ∈ Cα∗,loc(Ω) if and only if (Tn) ∈ Ek,k−αN (Ω).

4.2. Characterization of smoothness. We turn our attention to C∞ reg-
ularity, we now provide a criterion of smoothness for distributions. Observe
that we already presented a necessary and sufficient condition for smooth-
ness in Corollary 1.2, that was done in terms of the regularization sequence
(T ∗ φn). It turns out that one can employ more general approximation
sequences and achieve the same result. The next theorem was originally
obtained in [11], and extends an earlier result of Oberguggenberger (given
within Colombeau theory in [10]). Here we give a new proof based on The-
orem 4.2.

Theorem 4.6. Let T ∈ D′(Ω) and let (fn) be a sequence of C∞ functions
on Ω associated to it. Assume that

(4.3) (∀ω ⊂⊂ Ω)(∃s > 0)(∀m ∈ Nd)(sup
x∈ω
|∂mfn(x)| = O(ns)),

and (fn) approximates T with convergence rate:

(4.4) (∃b > 0)(T − fn = O(n−b) in D′(Ω)).

Then f ∈ C∞(Ω).

Proof. Since (4.3) and the conclusion of Theorem 4.6 are local statements,
we may assume that T ∈ E ′(Ω) and there exists an open subset ω ⊂⊂ Ω
such that

(4.5) suppT, supp fn ⊂ ω, n ∈ N.

We will show that T ∈ D(Ω). Our assumption now becomes (fn) ∈ E∞,sN (Ω)
for some s > 0. The support condition (4.5), the rate of convergence
(4.4), and the equivalence between weak and strong boundedness on E ′(Ω)
(Banach-Steinhaus theorem) yield

(4.6) (∃r ∈ N)(∃C > 0)(∀ρ ∈ E(Ω))(∀n ≥ 1)(|〈T − fn, ρ〉| ≤ Cn−b‖ρ‖r),

where ‖ρ‖r = supu∈Ω,|p|≤r |∂pρ(u)|. Let α be an arbitrary positive number.

We consider the test function φ ∈ S(Rd), recall that we assume
∫
Rd φ(x)dx =

1. Then, by (4.3) and (4.6), given any k ∈ N, we can find positive constants
C1 and C2 (depending only on k and φ) such that

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ C1n
s + C2n

−bνd+r+k, ν, n ∈ Z+.
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Find η > 0 such that ηs/b < 1/2. Setting n = [νkη/b] + 1, we obtain

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ C1(ν + 1)k−k/2 + C2ν
k−(ηk−d−r), ν ∈ Z+.

We can now choose k such that α < min {k/2, ηk − d− r}. The conclusion

from the previous estimate is then that ((T ∗φν)|ω) ∈ Ek,k−αN (ω), and hence,

by Corollary 4.3, T ∈ Cα∗ (Rd). Since α was arbitrary, it follows that T ∈
C∞(Rd). �

4.3. Other sufficient conditions for regularity. The next theorem is
directly motivated by Proposition 4.1. We relax the growth constrains in
(4.1), and, by requesting an appropriate rate of convergence, we obtain a
sufficient condition for the regularity of the distribution.

Theorem 4.7. Let T ∈ D′(Ω) and let (fn) be a sequence of Ck functions
on Ω that is associated to it. Assume that either of the following pair of
conditions holds:

(i) (fn) ∈ Ek,aN (Ω), ∀a > 0, namely,

(4.7) (∀a > 0)(∀ω ⊂⊂ Ω)(∀m ∈ Nd, |m| ≤ k)(sup
x∈ω
|∂mfn(x)| = O(na)),

and the convergence rate of (fn) to T is as in (4.4).

(ii) (fn) ∈ Ek,sN (Ω) for some s > 0, and there is a rapidly decreasing
function R : N→ R+, i.e., (∀a > 0, R(n) = O(n−a)), such that

(4.8) T − fn = O(R(n)) in D′(Ω).

Then, T ∈ Ck−η∗, loc(Ω) for every η > 0.

Proof. By localization, it suffices again to assume that T ∈ E ′(Ω) and there
exists an open subset ω ⊂⊂ Ω such that (4.5) holds. The proof is analogous
to that of Theorem 4.6. As usual, we use the test function φ ∈ S(Rd) with∫
Rd φ(x)dx = 1.

(i) In view of the Banach-Steinhaus theorem, the conditions (4.4) and
(4.5) imply (4.6). Thus, with C2 = C supu∈Rd,|p|≤r |∂pφ(u)|,

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ C2n
−bνd+r+k + ‖fn ∗ φν‖k,

≤ C2n
−bνd+r+k + ‖φ‖L1(Rd) ‖fn‖k, n, ν ∈ Z+.

By (4.7), given any a > 0, there exists M = Ma > 0 such that

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ C2n
−bνd+r+k +Mna, n, ν ∈ Z+.

By taking n = [ν(k+r+d)/b] + 1, it follows that

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ C2 +M(ν + 1)a(k+r+d)/b, ν ∈ Z+.
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If we take sufficiently small a, we conclude that (T ∗ φn) ∈ Ek,ηN (ω) for all
η > 0, and the assertion follows at once from Theorem 4.2.

(ii) The relation (4.8), the fact that R is rapidly decreasing, and the
Banach-Steinhaus theorem imply

(∃r ∈ N)(∀a > 0)(∃C > 0)(∀ρ ∈ Er(Ω))(|〈T − fn, ρ〉| ≤ Cn−a||ρ||r).
As in part (i), we have

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ Cn−aνd+r+k + ‖φ‖L1(Rd) ‖fn‖k, n, ν ∈ Z+.

for some constant C = Ca. Since (fn) ∈ Ek,sN (Ω), there is another constant
C = Ca,s,φ > 0 such that

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ Cn−aνd+r+k + Cns, n, ν ∈ Z+.

Setting n = [ν(k+r+d)/a] + 1, we have

sup
x∈ω,|m|≤k

|∂m(T ∗ φν)(x)| ≤ C + C(ν + 1)s(k+r+d)/a, ν ∈ Z+.

Thus, taking large enough a > 0, one establishes T ∈ Ek,ηN (ω) for all η > 0.

The conclusion T ∈ Ck−η∗ (Rd) follows once again from Theorem 4.2. �

We conclude this article with several comments about Theorem 4.7.
The hypotheses (4.4) and (4.8) are essential ingredients in Theorem 4.7.

The next two examples illustrate the fact that none of them can be omitted.

Example 4.8. Consider (fn) = (φlogn), i.e., the sequence given by fn(x) =

(log n)dφ(x log n). Clearly, (fn) ∈ E∞,sN (Rd), ∀s > 0. Moreover, this net is
associated to δ, the Dirac delta distribution. What makes fail the conclusion
of Theorem 4.7 in this example is the fact that the rate of convergence of
(fn) is too slow: If the rate of convergence were slightly faster, as in (4.4),
one would be led to the wrong conclusion that T = δ is a smooth function!

Example 4.9. Let T ∈ E ′(Rd) and s > 0. Suppose that T ∈ Ck−s∗ (Rd)
but T /∈ Ck−s/2∗ (Rd). By Theorem 4.2, (T ∗ φn) ∈ Ek,sN (Rd). However, the
conclusion of Theorem 4.7 fails for T . In this case, the approximation rate
is much slower than (4.8), even if one assumes vanishing of the higher order
moments of φ (cf. Example 3.1).

When T ∈ E ′(Ω), we may employ in part (i) of Theorem 4.7 the regular-
ization sequence fn = (T ∗ φn)|Ω; however, for this case it is better to apply
Theorem 4.2, because it provides the optimal regularity conclusion.
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