597 research outputs found

    Ontogeny of hallucal metatarsal rigidity and shape in the rhesus monkey (Macaca mulatta) and chimpanzee (Pan troglodytes)

    Get PDF
    Life history variables including the timing of locomotor independence, along with changes in preferred locomotor behaviors and substrate use during development, influence how primates use their feet throughout ontogeny. Changes in foot function during development, in particular the nature of how the hallux is used in grasping, can lead to different structural changes in foot bones. To test this hypothesis, metatarsal midshaft rigidity [estimated from the polar second moment of area (J) scaled to bone length] and cross-sectional shape (calculated from the ratio of maximum and minimum second moments of area, Imax /Imin ) were examined in a cross-sectional ontogenetic sample of rhesus macaques (Macaca mulatta; n = 73) and common chimpanzees (Pan troglodytes; n = 79). Results show the hallucal metatarsal (Mt1) is relatively more rigid (with higher scaled J-values) in younger chimpanzees and macaques, with significant decreases in relative rigidity in both taxa until the age of achieving locomotor independence. Within each age group, Mt1 rigidity is always significantly higher in chimpanzees than macaques. When compared with the lateral metatarsals (Mt2-5), the Mt1 is relatively more rigid in both taxa and across all ages; however, this difference is significantly greater in chimpanzees. Length and J scale with negative allometry in all metatarsals and in both species (except the Mt2 of chimpanzees, which scales with positive allometry). Only in macaques does Mt1 midshaft shape significantly change across ontogeny, with older individuals having more elliptical cross-sections. Different patterns of development in metatarsal diaphyseal rigidity and shape likely reflect the different ways in which the foot, and in particular the hallux, functions across ontogeny in apes and monkeys

    Data on a new beta titanium alloy system reinforced with superlattice intermetallic precipitates

    Get PDF
    The data presented in this article are related to the research article entitled “a new beta titanium alloy system reinforced with superlattice intermetallic precipitates” (Knowles et al., 2018) [1]. This includes data from the as-cast alloy obtained using scanning electron microscopy (SEM) and x-ray diffraction (XRD) as well as SEM data in the solution heat treated condition. Transmission electron microscopy (TEM) selected area diffraction patterns (SADPs) are included from the alloy in the solution heat treated condition, as well as the aged condition that contained < 100 nm B2 TiFe precipitates [1], the latter of which was found to exhibit double diffraction owing to the precipitate and matrix channels being of a similar width to the foil thickness (Williams and Carter, 2009) [2]. Further details are provided on the macroscopic compression testing of small scale cylinders. Of the micropillar deformation experiment performed in [1], SEM micrographs of focused ion beam (FIB) prepared 2 µm micropillars are presented alongside those obtained at the end of the in-situ SEM deformation as well as videos of the in-situ deformation. Further, a table is included that lists the Schmidt factors of all the possible slip systems given the crystal orientations and loading axis of the deformed micropillars in the solution heat treated and aged conditions

    Urinary metabolomics reveals glycemic and coffee associated signatures of thyroid function in two population-based cohorts

    Get PDF
    Triiodothyronine (T3) and thyroxine (T4) as the main secretion products of the thyroid affect nearly every human tissue and are involved in a broad range of processes ranging from energy expenditure and lipid metabolism to glucose homeostasis. Metabolomics studies outside the focus of clinical manifest thyroid diseases are rare. The aim of the present investigation was to analyze the cross-sectional and longitudinal associations of urinary metabolites with serum free T4 (FT4) and thyroid-stimulating hormone (TSH).Urine Metabolites of participants of the population-based studies Inter99 (n = 5620) and Health2006/Health2008 (n = 3788) were analyzed by 1H-NMR spectroscopy. Linear or mixed linear models were used to detect associations between urine metabolites and thyroid function.Cross-sectional analyses revealed positive relations of alanine, trigonelline and lactic acid with FT4 and negative relations of dimethylamine, glucose, glycine and lactic acid with log(TSH). In longitudinal analyses, lower levels of alanine, dimethylamine, glycine, lactic acid and N,N-dimethylglycine were linked to a higher decline in FT4 levels over time, whereas higher trigonelline levels were related to a higher FT4 decline. Moreover, the risk of hypothyroidism was higher in subjects with high baseline trigonelline or low lactic acid, alanine or glycine values.The detected associations mainly emphasize the important role of thyroid hormones in glucose homeostasis. In addition, the predictive character of these metabolites might argue for a potential feedback of the metabolic state on thyroid function. Besides known metabolic consequences of TH, the link to the urine excretion of trigonelline, a marker of coffee consumption, represents a novel finding of this study and given the ubiquitous consumption of coffee requires further research

    Optimised use of Oxford Nanopore Flowcells for Hybrid Assemblies

    Get PDF
    Hybrid assemblies are highly valuable for studies of Enterobacteriaceae due to their ability to fully resolve the structure of mobile genetic elements, such as plasmids, which are involved in the carriage of clinically important genes (e.g. those involved in antimicrobial resistance/virulence). The widespread application of this technique is currently primarily limited by cost. Recent data have suggested that non-inferior, and even superior, hybrid assemblies can be produced using a fraction of the total output from a multiplexed nanopore [Oxford Nanopore Technologies (ONT)] flowcell run. In this study we sought to determine the optimal minimal running time for flowcells when acquiring reads for hybrid assembly. We then evaluated whether the ONT wash kit might allow users to exploit shorter running times by sequencing multiple libraries per flowcell. After 24 h of sequencing, most chromosomes and plasmids had circularized and there was no benefit associated with longer running times. Quality was similar at 12 h, suggesting that shorter running times are likely to be acceptable for certain applications (e.g. plasmid genomics). The ONT wash kit was highly effective in removing DNA between libraries. Contamination between libraries did not appear to affect subsequent hybrid assemblies, even when the same barcodes were used successively on a single flowcell. Utilizing shorter run times in combination with between-library nuclease washes allows at least 36 Enterobacteriaceae isolates to be sequenced per flowcell, significantly reducing the per-isolate sequencing cost. Ultimately this will facilitate large-scale studies utilizing hybrid assembly, advancing our understanding of the genomics of key human pathogens

    Electron-phonon interaction in C70

    Full text link
    The matrix elements of the deformation potential of C70_{70} are calculated by means of a simple, yet accurate solution of the electron-phonon coupling problem in fullerenes, based on a parametrization of the ground state electronic density of the system in terms of sp2+xsp^{2+x} hybridized orbitals. The value of the calculated dimensionless total electron-phonon coupling constant is λ0.1\lambda\approx0.1, an order of magnitude smaller than in C60_{60}, consistent with the lack of a superconducting phase transition in C70_{70}A3_3 fullerite, and in overall agreement with measurements of the broadening of Raman peaks in C70_{70}K4_4. We also calculate the photoemission cross section of C70_{70}^-, which is found to display less structure than that associated with C60_{60}^-, in overall agreement with the experimental findings.Comment: To be published in Phys. Rev.

    A machine learning approach to predict resilience and sickness absence in the healthcare workforce during the COVID-19 pandemic

    Get PDF
    During the COVID-19 pandemic, healthcare workers (HCWs) have faced unprecedented workloads and personal health risks leading to mental disorders and surges in sickness absence. Previous work has shown that interindividual differences in psychological resilience might explain why only some individuals are vulnerable to these consequences. However, no prognostic tools to predict individual HCW resilience during the pandemic have been developed. We deployed machine learning (ML) to predict psychological resilience during the pandemic. The models were trained in HCWs of the largest Finnish hospital, Helsinki University Hospital (HUS, N = 487), with a six-month follow-up, and prognostic generalizability was evaluated in two independent HCW validation samples (Social and Health Services in Kymenlaakso: Kymsote, N = 77 and the City of Helsinki, N = 322) with similar follow-ups never used for training the models. Using the most predictive items to predict future psychological resilience resulted in a balanced accuracy (BAC) of 72.7-74.3% in the HUS sample. Similar performances (BAC = 67-77%) were observed in the two independent validation samples. The models' predictions translated to a high probability of sickness absence during the pandemic. Our results provide the first evidence that ML techniques could be harnessed for the early detection of COVID-19-related distress among HCWs, thereby providing an avenue for potential targeted interventions.Peer reviewe

    "I feel so stupid because I can't give a proper answer ..." How older adults describe chronic pain: a qualitative study

    Get PDF
    Background - Over 50% of older adults experience chronic pain. Poorly managed pain threatens independent functioning, limits social activities and detrimentally affects emotional wellbeing. Yet, chronic pain is not fully understood from older adults’ perspectives; subsequently, pain management in later life is not necessarily based on their priorities or needs. This paper reports a qualitative exploration of older adults’ accounts of living with chronic pain, focusing on how they describe pain, with a view to informing approaches to its assessment. Methods - Cognitively intact men and women aged over sixty-five who lived in the community opted into the study through responding to advertisements in the media and via contacts with groups and organisations in North-East Scotland. Interviews were transcribed and thematically analysed using a framework approach. Results - Qualitative individual interviews and one group interview were undertaken with 23 older adults. Following analysis, the following main themes emerged: diversity in conceptualising pain using a simple numerical score; personalising the meaning of pain by way of stories, similes and metaphors; and, contextualising pain in relation to its impact on activities. Conclusions - The importance of attending to individuals’ stories as a meaningful way of describing pain for older adults is highlighted, suggesting that a narrative approach, as recommended and researched in other areas of medicine, may usefully be applied in pain assessment for older adults. Along with the judicious use of numerical tools, this requires innovative methods to elicit verbal accounts, such as using similes and metaphors to help older adults describe and discuss their experience, and contextualising the effects of pain on activities that are important to them

    Genetic lineage tracing reveals poor angiogenic potential of cardiac endothelial cells.

    Get PDF
    Abstract Aims Cardiac ischaemia does not elicit an efficient angiogenic response. Indeed, lack of surgical revascularization upon myocardial infarction results in cardiomyocyte death, scarring, and loss of contractile function. Clinical trials aimed at inducing therapeutic revascularization through the delivery of pro-angiogenic molecules after cardiac ischaemia have invariably failed, suggesting that endothelial cells in the heart cannot mount an efficient angiogenic response. To understand why the heart is a poorly angiogenic environment, here we compare the angiogenic response of the cardiac and skeletal muscle using a lineage tracing approach to genetically label sprouting endothelial cells. Methods and results We observed that overexpression of the vascular endothelial growth factor in the skeletal muscle potently stimulated angiogenesis, resulting in the formation of a massive number of new capillaries and arterioles. In contrast, response to the same dose of the same factor in the heart was blunted and consisted in a modest increase in the number of new arterioles. By using Apelin-CreER mice to genetically label sprouting endothelial cells we observed that different pro-angiogenic stimuli activated Apelin expression in both muscle types to a similar extent, however, only in the skeletal muscle, these cells were able to sprout, form elongated vascular tubes activating Notch signalling, and became incorporated into arteries. In the heart, Apelin-positive cells transiently persisted and failed to give rise to new vessels. When we implanted cancer cells in different organs, the abortive angiogenic response in the heart resulted in a reduced expansion of the tumour mass. Conclusion Our genetic lineage tracing indicates that cardiac endothelial cells activate Apelin expression in response to pro-angiogenic stimuli but, different from those of the skeletal muscle, fail to proliferate and form mature and structured vessels. The poor angiogenic potential of the heart is associated with reduced tumour angiogenesis and growth of cancer cells
    corecore