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Abstract

Life history variables including the timing of locomotor independence, along with changes in 

preferred locomotor behaviors and substrate use during development, influences how primates use 

their feet throughout ontogeny. Changes in foot function during development, in particular the 

nature of how the hallux is used in grasping, can lead to different structural changes in foot bones. 

To test this hypothesis, metatarsal midshaft rigidity (estimated from the polar second moment of 

area [J] scaled to bone length) and cross-sectional shape (calculated from the ratio of maximum 

and minimum second moments of area, Imax/Imin) were examined in a cross-sectional 

ontogenetic sample of rhesus macaques (Macaca mulatta; n=73) and common chimpanzees (Pan 
troglodytes; n=79). Results show the hallucal metatarsal (Mt1) is relatively more rigid (with higher 

scaled J values) in younger chimpanzees and macaques, with significant decreases in relative 

rigidity in both taxa until the age of achieving locomotor independence. Within each age group, 

Mt1 rigidity is always significantly higher in chimpanzees than macaques. When compared to the 

lateral metatarsals (Mt2–5), the Mt1 is relatively more rigid in both taxa and across all ages, 

however this difference is significantly greater in chimpanzees. Length and J scale with negative 
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allometry in all metatarsals and in both species (except the Mt2 of chimpanzees, which scales with 

positive allometry). Only in macaques does Mt1 midshaft shape significantly change across 

ontogeny, with older individuals having more elliptical cross sections. Different patterns of 

development in metatarsal diaphyseal ridgidity and shape likely reflects the different ways in 

which the foot, and in particular the hallux, functions across ontogeny in apes and monkeys.
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Introduction

Inter- and intraspecific differences exist in the ways primates use their hallux as a grasping 

organ during locomotion and other behaviors, and this has long been hypothesized to be 

reflected in its functional morphology (Conroy and Rose, 1983; Gebo, 1985; Szalay and 

Dagosto, 1988; Strasser, 1994; Goodenberger et al., 2015). For example, non-human 

primates that are perceived to use their big toes to grasp with greater force tend to have 

relatively longer and more robust hallucal metatarsals (Mt1s) (Conroy and Rose, 1983). 

These include taxa that habitually walk on narrow diameter arboreal substrates in contrast to 

those that walk on wider diameter branches or on the ground, as well as taxa that use more 

vertical climbing, grasp-leaping and hindlimb suspensory behaviors versus those that are 

predominantly quadrupedal (e.g., Cartmill, 1974, 1985; Conroy and Rose, 1983; Patel et al., 

2017). In line with hypotheses proposed by Preuschoft (1970) based on theoretical analyses, 

one biomechanical rationale for this is that Mt1s used in habitual hallucal opposition and 

grasping should experience variable and greater mechanical loads than Mt1s that are used 

less frequently in these behaviors. These contrasting loading environments are likely caused, 

in part, by differential contraction of muscle-tendon complexes that move the hallux, in 

combination with larger bending moments that act on the diaphysis as the hallux opposes the 

other digits around a curved or uneven substrate. Therefore, with the potential for 

experiencing habitually greater bending moments there would be a need for greater 

structural rigidity. Some support for this comes from morphological studies exploring 

metatarsal cross-sectional geometric properties in apes that rely on a grasping hallux for 

diverse positional and locomotor behaviors (e.g., Marchi, 2005, 2010; Jashashvili et al., 

2015).

Our understanding of the relationship between in vivo grasping performance (i.e., force 

production) and hallux morphology in primates, however, has been based primarily on 

indirect lines of experimental evidence since, at least to our knowledge, there are no 

published studies assessing hallux grasping strength using force transducers. For example, 

research using electromyography to investigate muscles that flex and adduct the hallux 

(Boyer et al., 2007; Kingston et al., 2010; Patel et al., 2015a, b) can only be used to 

generalize and make inferences about force magnitudes (e.g., Roberts and Gabaldón, 2008). 

The few early dynamic plantar pressure studies in non-human primates, most of which had 

been on flat, terrestrial substrates, described the magnitudes of pressure (and the vertical 

component of ground reaction force) acting on the hallux during locomotion, but these rarely 
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discuss specific bouts of grasping (Wunderlich, 1999; Vereecke et al., 2003; Higurashi et al., 

2010; Hirasaki et al., 2010). More recently, however, plantar pressure analyses comparing 

terrestrial and above-branch quadrupedalsim with vertical climbing in chimpanzees have 

noted that the hallux experiences higher pressure-time integrals during the support phase of 

the two arboreal behaviors, thereby suggesting that the hallux is loaded more when used to 

grasp than when used as a weight-bearing strut (Wunderlich and Ischinger, 2017). Also 

during arboreal quadrupedalism in lemurids, the hallux appears to experience higher mean 

and maximal pressures than the lateral pedal digits (see Table 2 in Congdon and Ravosa, 

2016). Overall, however, in the absence of more focused experimental data, alternative 

approaches are necessary to further understand the relationship between Mt1 morphology 

and hallucal grasping performance and behavior.

One approach to assess a potential biomechanical link between behavior and skeletal 

structure is to use animal models such as rodents. Specifically for hallucal grasping, mice 

raised in enclosures with complex simulated fine-branch arboreal substrates have been 

observed to habitually use their hallux in grasping bouts to aid in above branch balance 

(Byron et al., 2011). These same mice have Mt1s with diaphyses that are relatively more 

robust (as determined from cross-sectional geometric properties) than those mice raised on 

the ground that do not use their hallux to grasp the substrate (Byron et al., 2015). These 

studies highlight how habitually different locomotor behaviors and substrate use during 

development can influence the relative strength of the Mt1. Moreover, it provides additional 

support for the hypothesis that behavior (in this case, hallucal grasping) influences habitual 

loading, which in turn influences bone cross-sectional shape. For primates, however, an 

approach examining a cross-sectional ontogenetic sample of taxa with different 

developmental patterns in habitual hallux use is more feasible than longitudinal lab-based 

experiments (but see Jungers and Fleagle, 1980; Young et al., 2010; Young and Heard-

Booth, 2016).

The cheridia of young non-human primates are structured for increased grasping ability 

(Young and Heard-Booth, 2016). During the earliest months or even the first few years of 

life, infant and smaller juvenile primates rely on their mothers for survival including 

traveling long distances (e.g., Fragaszy et al., 1989; Altmann, 2001; Ross, 2001). The mode 

in which they are carried by their mothers can influence the grasping strategies used by the 

hands and feet. In both Old World monkeys and African apes, mothers initially carry their 

small infants ventrally on their bellies (Nakamichi and Yamada, 2009). During ventral 

carriage, the infant must overcome gravitational forces, as well as all oscillatory forces 

caused by the mother’s locomotion, that are tending to dislodge it. Relatively large grasping 

hands and feet in some infant primates can facilitate their ability to cling to their mother’s 

belly (e.g., Grand, 1977; Jungers and Fleagle, 1980; Raichlen, 2005; Young and Heard-

Booth, 2016).

As they grow, many young primates eventually shift to a more dorsal carriage position on 

their mother’s lower back or thorax (Nakamichi and Yamada, 2009; Anvari et al., 2014). In a 

dorsal position, manual and pedal grasping may not be as vital for surviving a long bumpy 

ride when the mother is walking quadrupedally, but they likely are still being used to some 

extent when she is climbing or engaged in acrobatic arboreal activities like suspension. After 
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reaching a certain body size or mechanical competency, young juveniles become locomotor 

independent. The timing of locomotor independence has been shown previously to 

correspond well with clear changes in limb bone rigidity, strength, and shape properties in 

both monkeys and apes (Ruff, 2003b; Young et al., 2010; Russo and Young, 2011; 

Sarringhaus et al., 2016). Limb bones of very young individuals are overly built (relative to 

body mass and/or bone length) and decrease in structural competency (i.e., safety factors) as 

they grow and become more proficient in their movements (Ruff, 2003b; Young et al., 

2010). In the case of the hallux, it too may be biomechanically stronger than its needs to be 

in very young individuals because it is used heavily to grasp their mothers during ventral 

carriage. As primates become locomotor independent, the relative strength of their Mt1 may 

also decrease if they graduate to using their hallux with relatively less force. That would be 

the case for many monkeys and apes that may rely less on their grasping feet after infancy, 

but for others that continue to rely heavily on them throughout life, it may not.

The gradual (or abrupt) changes in habitual substrate use and preferred locomotor and 

postural modes during development may also change the nature in which the hallux is used 

in grasping during an individual’s lifetime. Locomotor behaviors in African apes are more 

variable early on in life, where younger chimpanzees and gorillas are not only quadrupedal, 

but also engage in more forelimb suspension, vertical climbing, bipedalism and other 

behaviors (e.g., Doran, 1992, 1997; Sarringhaus et al., 2014). Additionally, African apes 

tend to become less arboreal with age, thereby reducing their reliance on forelimb 

suspensory and vertical climbing bouts (Doran, 1992, 1997; Sarringhaus et al., 2016). As 

African apes continue to use terrestrial substrates more with age, their increased reliance on 

quadrupedalism and simultaneous reduction in vertical climbing activity may result in a 

lower frequency of powerful hallucal grasping later in ontogeny. In contrast, many monkeys 

like rhesus macaques primarily engage in arboreal quadrupedal walking upon reaching 

locomotor independence, with other behaviors like running, leaping and climbing are used to 

a lesser degree throughout ontogeny and into adulthood (Rawlins, 1982; Wells and 

Turnquist, 2001). Therefore, it is likely that growing monkeys may also be power grasping 

with their hallux only very early in life, and that the use of the hallux and the mechanical 

stresses it is subjected to into adulthood become less forceful and less variable over time in 

both direction and magnitude. When comparing monkeys to African apes, however, since 

the former are more arboreal throughout ontogeny and into adulthood, it is possible that 

older monkeys will have a biomechanically more robust Mt1 than older apes, assuming that 

they actually engage their hallux for frequent bouts of powerful hallucal grasping.

In this study, we test the hypothesis that ontogenetic changes in locomotor and postural 

behaviors can alter the form and function of the developing Mt1, specifically its midshaft 

robusticity and shape. Additionally, we test the hypothesis that different patterns in 

locomotor ontogeny between apes and monkeys will produce different patterns of Mt1 

midshaft strength and shape development in both groups. Three predictions are made: 1) 

Mt1 robusticity will be relatively greater at younger ages in both apes and monkeys; 2) Mt1 

robusticity will be relatively larger in monkeys compared to apes, especially at older ages; 

and 3) Mt1 midshaft shape will see greater changes in apes than monkeys across ontogeny. 

Here we use the rhesus macaque (Macaca mulatta) and common chimpanzee (Pan 
troglodytes) as representative monkey and ape species, respectively. Both are ideal 
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comparative taxa for this cross-sectional ontogenetic analysis because much is known about 

their life histories and ontogenetic changes in locomotor and positional behavior (Rawlins, 

1982; Doran, 1992, 1997; Wells and Turnquist, 2001; Sarringhaus et at., 2014, 2016).

Materials and Methods

All five metatarsals were analyzed from a cross-sectional ontogenetic sample of 73 rhesus 

macaques (Macaca mulatta) and 79 common chimpanzees (Pan troglodytes). The sample of 

macaques was derived entirely from the skeletal collection in the Laboratory of Primate 

Morphology and Genetics of the Caribbean Primate Research Center (CPRC), located at the 

University of Puerto Rico. This collection contains a large number of complete skeletons at 

all developmental stages from a colony of free-ranging monkeys that were reared in a 

uniform environment and that have been extremely well-documented from long term 

observation (e.g., Rawlins and Kessler, 1986; see also literature cited in Dunbar, 2012). 

Multiple museums were needed for the chimpanzee sample to obtain sufficient sample sizes 

across all developmental age groups. The sample of wild-shot chimpanzees come from the 

collections at the: 1) Anthropologisches Institut und Museum (AIM) of the Universität 

Zürich, Zürich, Switzerland; 2) the Royal Museum for Central Africa (RMCA) in Tervuren, 

Belgium; 3) the National Museum of Natural History (NMNH) in Paris, France; and 4) the 

Hamann-Todd Collection at the Cleveland Museum of Natural History (CMNH).

Because actual ages of the chimpanzee specimens were not known, five developmental age 

class categories (Table 1) were adopted based on dental eruption schedules described in 

Dean and Wood (1981), an approach also used by Sarringhaus et al. (2016). The rhesus 

macaques at the CPRC all have documented ages at death, but dental eruption stages for 

these specimens were assessed following Kenney (1975) in order to make appropriate 

comparisons of the macaques with the chimpanzees across developmental stages. According 

to Cheverud (1981), dental eruption stages follow a similar order of eruption timing in both 

rhesus macaques and chimpanzees. For both species, age Group 1 are young infants that 

consists of individuals that rely on their mothers (or other caregivers) to facilitate 

locomotion across long distances and age Group 2 are older infants and young juveniles who 

are becoming locomotor independent (i.e., transitional locomotion) (Doran, 1997; Wells and 

Turnquist, 2001). Age Groups 3 and 4 are older juveniles and adolescents individuals who 

are locomotor independent, and are increasing in somatic growth, while age Group 5 

individuals are full adults in all aspects of form and behavior. Metatarsal epiphyses begin to 

fuse between three and four years of age in rhesus macaques (Bourne, 1975), thus 

corresponding to age Group 3 in this study. Age Groups 4 and 5 macaques visually appeared 

to have fully fused metatarals. Similarly, metatarsal epiphyses are partially fused between 

eight and nine years of age in chimpanzees (Brimacombe et al., 2015), also corresponding to 

age Group 3 in this study. Age Group 4 and 5 chimpanzees all appeared to have fused 

metatarals upon visual inspection. Table 2 provides sample sizes for each species within 

each age group.

Physical or digital cross sections of long bones are ideal to quantify cross-sectional 

geometric variables, especially of small bones like metatarsals. Unfortunately, physically 

sectioning museums specimens is destructive and often prohibited, and access to computed 
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tomography (CT) or μCT facilities were not available at the time when a portion of the data 

analyzed here were collected (Dunsworth, 2006). In the absence of CT scans, bi-planar 

radiography combined with latex molding (i.e., latex cast method; LCM) of the external 

surface serves as an adequate substitute because it can approximate true section properties of 

bone (e.g., Stock, 2002; O’Neill and Ruff, 2004; Marchi, 2005). Moreover, combining long 

bone cross-sectional geometry data acquired from multiple methods (i.e., CT and biplanar 

radiography) is not uncommon since there are likely no systematic differences (Polk et al., 

2000). All chimpanzees in age Groups 2–5, and a single individual in Group 1, were 

analyzed using the LCM. Macaques from age Groups 3 and 4 were also analyzed using the 

LCM. Group 1 chimpanzees, and macaques from Groups 1, 2 and 5 were analyzed from CT 

or μCT scans.

The LCM for reconstructing bone cross sections combines bi-planar radiography with latex 

molding of the external surface of the diaphysis. In the LCM sample, midshaft was 

determined as the midpoint of absolute bone length. To assess the circumference of the outer 

diaphyseal surface in cross section, silicone-based molds of the metatarsal midshafts were 

photographed with a digital camera and measurements were made using ImageJ software 

(Rasband, 1997–2016). To reconstruct the circumference of the medullary cavity, thickness 

of the medial, lateral, dorsal, and plantar cortices were measured using ImageJ from two 

radiographs of each metatarsal taken in the dorsal-plantar and the medio-lateral planes, 

corrected for parallax, and then drawn inside the scaled digital photograph of the mold of the 

outer circumference. Metatarsal anatomical orientations followed Marchi (2005). These four 

cortical thickness lines help determine the size and placement of an ellipse drawn in the 

center of the section to approximate the medullary cavity. Cross-sectional properties were 

obtained from these reconstructed images of the midshaft cross sections with the MOI 

(Moment of Inertia) script (written by Timothy Ryan) in the software IDL (Interactive Data 

Language; RSI®). A more detailed description of the LCM methodology employed here, 

including equipment used, error studies, and parallax correction can be found in Dunsworth 

(2006).

Computed tomography scans of age Group 1 chimpanzees come from two sources. Four 

individuals were scanned in the UZ Leuven Department of Radiology (Leuven, Belgium) 

using a Siemens CT-SOM5 SPI medical scanner. The remaining individuals were scanned in 

the Department of Radiology of the Pitié-Salpêtrière Hospital (Paris, France) using a Philips 

iCT256 medical scanner. Similar scanning parameters were used in both facilities: energy: 

140 kVp; current: 130–253 mA; slice thickness: 0.67 mm; reconstruction increment: 0.3 

mm. The raw data were reconstructed as 16-bit DICOM images using a bone reconstruction 

algorithm (i.e., a “sharp” kernel). The CT data from both sources were analysed using Avizo 

Lite v. 9.0 software following the protocol outlined in Jashashvili et al. (2015) and 

Dowdeswell et al., (in press), which involved isolating individual metatarsals (since 

multiples bones were scanned simultaneously), 3D re-orienting of each bone into a 

standardized anatomical position (following Marchi, 2005), extracting the re-oriented slice 

corresponding to midshaft from its inter-articular length. The midshaft slices were imported 

into ImageJ where it was measured using the Slice Geometry protocol and default single 

slice thresholding option in the BoneJ plugin (Doube et al., 2010).
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For the macaques in age Groups 1, 2 and 5, μCT scanner technology was used to acquire 

digital cross section. The Group 5 macaques were scanned at the University of Southern 

California’s Molecular Imaging Center using a SCANCO Medical 50 specimen scanner with 

a voxel resolution of 48.4 μm. Scanning parameters included: energy: 90 kVp; current: 144 

μA; filter: Al 0.5 mm; integration time: 100 ms; projections: 750/180°; image size: 

1024×1024 pixels. The raw data were reconstructed as 16-bit DICOM images and then 

converted to 8-bit DICOM images for analysis. The image stack for each metatarsal was 

imported into ImageJ software where it was first re-oriented using the Moment of Inertia 

protocol in the BoneJ plugin for ImageJ software. This plugin calculates the three 

orthogonal principal axes (x, y, z) from the raw pixel data after thresholding for bone pixels 

in the entire stack and produces a new image stack that is standardized in orientation (i.e., 

rotation and translation). The same anatomical definitions for the bi-planar radiography and 

CT methods described above were implemented here as well (following Marchi, 2005). 

After identifying the reoriented slice corresponding for midshaft (based on inter-articular 

length), the Slice Geometry protocol in BoneJ was used to calculate the cross-sectional 

geometry variables using the default single slice thresholding option.

The age Group 1 and 2 macaques were scanned at The Pennsylvania State University’s 

Center for Quantitative using a OMNI-X HD600 Industrial microCT scanner and X-TEK 

microfocus subsystem (Varian, Inc) with a voxel resolution of 10.55 μm. Scanning 

parameters included: energy: 180 kVp; current: 0.11 mA; projections: 2400/180°; image 

size: 1024×1024 pixels. Prior to scanning, the five metatarsals for each individual were set 

up in a standardized anatomical position (following Marchi, 2005) so they could be scanned 

simultaneously. For this sample, only the midshaft regions were scanned to save on time and 

cost, and the data were saved as 8-bit TIF images. The single slices corresponding to 

midshaft (based on bone length) were imported into ImageJ for analyzis with the 

MomentMacro plugin (http://www.hopkinsmedicine.org/fae/mmacro.html) using the default 

thresholding option native to ImageJ.

Metatarsal strength and robusticity can be estimated in many ways from its cross-sectional 

geometry including calculations of cortical area and section modulus (Marchi, 2005; Griffin 

and Richmond, 2005; Jashashvili et al., 2015). In this study, we emphasized the polar second 

moment of area (J), which is a measure of twice bending rigidity as well as torsional rigidity, 

and is calculated by adding together the maximum and minimum second moments of area, 

Imax and Imin, respectively, which are measures of bending rigidity (e.g., Ruff and Hayes, 

1983). Following the conclusions put forth by Lieberman and colleagues (2004) regarding 

interpretation of cross-sectional geometric variables, there were three primary reasons why J 
was emphasized over other variables. First, it is not entirely clear in what direction (e.g., 

mediolateral; dorsoplantar) or by what nature (e.g., compression, bending or torsion) the 

metatarsals are loaded when used during locomotion or other behaviors with pedal grasping. 

It is likely that they are experiencing multiple external forces and from multiple directions 

(e.g., Preuschoft, 1970), and J can cautiously account for these. Second, it has been shown 

that J is a reliable predictor, although not without error, of average bending rigidity when 

experimental data of bone loading is unavailable (Ruff, 2002; Organ, 2010). Third, it is a 

variable that can be compared across datasets that use different data acquisition protocols 

(Polk et al., 2000; O’Neill and Ruff, 2004) as was necessary in this study (see above).
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To compare metatarsal rigidity values across age groups that differ in size and absolute 

length (L), as well as between macaques and chimpanzees (with the latter being significantly 

larger in mass [Smith and Jungers, 1997]), dimensionless scaled J (= Js) values were 

calculated as J0.25/L. It is important to note that conventionally J is scaled by the product of 

L and body mass (Polk et al., 2000; Ruff, 2000), however, in this study only L was used 

because actual body mass data for most of the sample was not available (cf. Organ, 2010)1, 

and it seemed illogical to estimate body mass from femoral head measurements since 

extrapolating these data for infants/juveniles from adult-derived equations (e.g., Ruff, 2003a) 

would only introduce more sources of error in the analyses. Moreover, fusion of the femoral 

head does not begin until about three years of age in rhesus macaques (Bourne, 1975) and 10 

years of age in chimpanzees (Zihlman et al., 2007) which correspond to age Group 3 

individuals in this study, thus making measurements of femoral heads prone to error. Length 

values were obtained either with digital calipers on actual specimens or from virtual 3D 

surface renderings of the bones derived from computed tomography (CT) scans. For 

chimpanzee infants and young juveniles with unfused epiphyses, the epiphysis was placed 

on the end before measuring length and if the epiphysis was not present, the length of the 

epiphysis was estimated using specimens of similar age, size, and sex. Bone length for infant 

and young juvenile macaques with unfused epiphyses was measured withouth re-attaching 

the epiphyses because they were usually missing in the collections. Moreover, the epiphyseal 

length was not estimated in these specimens given the possibility of introducing error given 

the very small size of these boney elements (<1.0 mm).

Because younger individuals will have shorter metatarsals, and smaller bones tend to have 

smaller J values (e.g., Ruff, 2000), we also assessed changes in metatarsal rigidity across 

ontogeny by evaluating whether J scales isometrically or allometrically with L for each digit 

in both species. To accomplish this, the natural log (ln) of L was regressed against ln J using 

reduced major axis (RMA) regression techniques to calculate slope and its 95% confidence 

intervals (CI). A slope that was not significantly different from 4.0 (i.e., was within the 95% 

CI of the slope) was considered isometric. Slopes significantly lower than 4.0 were 

considered to display negative allometry. Slopes significantly greater than 4.0 were 

considered to display positive allometry. Past v.3.04 software (Hammer, 2014) was used to 

perform the RMA regression analyses.

A ratio of Imax and Imin values for only the Mt1 were also used to calculate its midshaft 

shape. A number of studies have argued that an Imax/Imin ratio can be used as a proxy for 

inferring whether a long bone experiences loads that are relatively complex rather than 

uniform in direction (e.g., Carlson, 2005, Carlson and Judex, 2007; Patel et al., 2013; 

Sarringhaus et al., 2016). Values greater than 1.0 indicate an elliptical cross-sectional shape 

and suggests that a bone experiences more habitual or uni-directional loading. The greater 

deviation from 1.0 would further suggest a loading environment that was relatively more 

uniform.

1Alternatives for body mass, such as femoral head bread (FHB) can be used and thus J could be scaled by the product of L and FHB 
(e.g., Dunsworth, 2006). This approach, however, was not followed here because FHBs for Age Group 1 chimpanzees were 
unavailable. We did test this approach in the macaque sample (since we had estimates of FHBs for all individuals) and found near 
identical patterns when J is scaled by L or when J is scaled by LxFHB (see Figure S1 in Supplemental Online Material, SOM). A 
likely reason for the similarities in both scaling approaches is because macaque L and FHB scale isometrically (see Table S1 in SOM).
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Finally, to assess the robusticity of the Mt1 compared to the other metatarsals (Mt2–5) over 

ontogeny, a ratio was created of relative Mt1 Js values (= JSRel). This was accomplished by 

dividing Mt1 Js by the geometric mean of Mt2–5 Js values,

A JSRel value greater than 1.0 indicates that Mt1 Js is greater than Mt2–5 Js.

The Js for each metatarsal, and JSRel and Imax/Imin ratios for only the Mt1s, were compared 

across age groups within macaques and chimpanzees. Additionally, Js and JSRel values for 

each metatarsal were compared between macaques and chimpanzees within each age group. 

Comparisons between age groups or species were made with ANOVAs, and if significant, 

post-hoc comparisons were made using Tukey’s HSD tests. These statistical analyses were 

performed in JMP v.12 software (SAS Institute, Inc.).

Results

Descriptive statistics for L, J, and Js for each age group of both species are presented in 

Table 2. The Mt1s of younger macaques in age Groups 1 and 2 have significantly larger Js 

values than that of their older counterparts in age Groups 3–5 (Tables 2 and 3; Fig. 1). The 

same pattern of decreased rigidity over ontogeny is seen in chimpanzees, although 

differences are only significant in age Group 1 vs other older age groups (Table 2). As 

macaques and chimpanzees continue to grow after becoming locomotor independent and 

into adulthood, the relative rigidity of their Mt1s remains low, but begin to become slightly 

stronger in to age Group 5. In the macaque sample, Js for Mt1s are lowest in age Group 3, 

whereas in chimpanzees they are lowest in age Group 4 individuals (Table 2; Fig. 1). 

However, there are no significant differences across age Groups 3–5 in either species.

In macaques, Js for Mt2–5 changes over ontogeny (Tables 2 and 3, Fig. 1). Except for Mt2, 

age Group 1 individuals have more rigid lesser metatarsals than age Group 2 individuals. 

Younger macaques in age Groups 1 and 2 also have significantly more rigid Mt2–5s than 

older individuals in age Groups 3–5. Generally, there are few significant differences in s 

between the three older macaque groups. As seen in Mt1, Js for Mt2–5 appear to be the 

lowest in age Group 3 individuals (Fig. 1).

In chimpanzees, Js for Mt2–5 are in general not significantly different across age groups 

(Tables 2 and 3, Fig. 1). However, there are two notable exceptions. First, the Mt5 of age 

Group 1 chimpanzees is structurally the most rigid with a significantly higher s than all older 

individuals. Second, the Mt2 of age Group 5 chimpanzees is significantly more rigid with 

higher Js values than all younger individuals.

Across age groups, Mt1 Js is always significantly greater in chimpanzees than in macaques, 

and these differences are greatest in older individuals in age Groups 3–5 (Tables 2 and 4). 

Similarly, chimpanzees in age Groups 3–5 have Mt2–5s with a significantly larger Js when 

compared to macaques of the same relative age (Table 4). In general, chimpanzees and 

macaques in age Groups 1 and 2 do not significantly differ from each other in Js values for 
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Mt2–5. The one exception is that macaques have significantly more rigid Mt2s in individuals 

that make up age Group 1 (Table 4).

Older individuals of both species have longer metatarsals and larger J values. However, the 

scaling between J and L differs between macaque and chimpanzees (Table 5). In macaques, 

metatarsal J and L scale significantly with negative allometry for all metatarsals (mean slope 

= 2.65). In chimpanzees, Mt1, Mt4 and Mt5 J and L scale with significant negative allometry 

(mean slope = 3.42), while in the Mt2 they scale with significant positive allometry (slope = 

4.51). Although J and L in the chimpanzee Mt3 do not scale significantly different from 

isometry and is within the 95% CI of 4.0 (upper bound of slope = 4.0044), this is effectively 

negative allometric (with a calculated slope = 3.81). Collectively, RMA slope values for the 

macaques are significantly lower across all metatarsals indicating that the reduction in 

rigidity as metatarsals get longer over ontogeny is greater, a pattern that supports the trends 

noted above for Js over ontogeny (Fig. 1). In both macaques and chimpanzees, the RMA 

slopes for the Mt1 is always smaller than the RMA slopes for Mt2–5 (Table 5).

In both macaques and chimpanzees, Mt1 JSRel is always greater than 1.0 indicating that the 

Mt1 is relatively stronger than Mt2–5 at any age (Table 6, Fig. 2). Also in both taxa, SRel is 

greatest in age Group 1 individuals, although this is only statistically significant in 

chimpanzees (Tables 6 and 7). Across age Groups 2–5, JSRel decreases in chimpanzees 

(although not significantly) while remaining comparatively constant in macaques (Tables 6 

and 7; Fig. 2). Chimpanzees also have significantly higher JSRel values for each ontogenetic 

age group except age Group 3 (Table 8).

Both macaques and chimpanzees have Mt1s that are elliptical in shape with Imax/Imin ratios 

always greater than 1.0. Also, in general, macaques have more elliptical cross sections than 

chimpanzees in all age groups (Table 9; Fig. 3). Over ontogeny, Mt1 shape significantly 

changes in macaques to become even more elliptical where age Groups 1 and 2 have a mean 

shape value of 1.37 and adults in age Groups 4 and 5 have mean shape values of 1.51 

(Tables 9 and 10, Fig. 3). In contrast Mt1 shape does not significantly change in 

chimpanzees over ontogeny (Table 10).

Discussion

The timing of locomotor independence along with changes in habitual locomotor behaviors 

and substrates used throughout ontogeny can influence how primates use their hallux as a 

grasping organ. Accordingly, there should be accompanying changes in foot bone structural 

properties during ontogeny that reflect changes in grasping performance (i.e., force 

production and frequency of use), especially in the hallucal metatarsal (Mt1). The primary 

aim of this study was to test this hypothesis by evaluating metatarsal midshaft rigidity, 

estimated from the polar second moment of area (J), and metatarsal midshaft cross-sectional 

shape, calculated from the ratio of maximum and minimum second moments of area (Imax/

Imin), in a cross-sectional ontogenetic sample of common chimpanzees and rhesus 

macaques, two taxa with different positional behaviors, substrate preferences and foot use 

across ontogeny.
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As predicted, the Mt1 of both species is more rigid (relative to length) in younger 

individuals, and relative rigidity gradually decreases with age in both species (Fig. 1; Table 

2). This lends support for the hypothesis that the youngest macaques and chimpanzees use 

their hallux with relatively greater force during pedal grasping. As individuals of each 

species age, grow, become locomotor independent, and gradually obtain a habitual repertoire 

of positional behaviors and substrate preferences, their Mt1 becomes relatively less rigid, 

with no noteworthy differences in robusticity after maturing to age Group 3. Studies of 

primate life history events have shown that different primates achieve locomotor 

independence at different absolute ages. Although young African apes can begin to 

locomote after three months of age, they do so in near proximity to their mothers and on 

average, chimpanzees and gorillas are completely locomotor independent of their mothers 

by four or five years of age, respectively (Doran, 1997). In contrast, more precocial monkeys 

like baboons are independent of their mothers as early as three months of age and 

completely by 8–12 months (Altman, 2001; Altman and Samuel, 1992; Rawlins, 1982). In 

rhesus macaques, locomotor independence is complete by 18 months of age (Wells and 

Turnquist, 2001). Despite these absolute age differences in African apes and monkeys, this 

transition period of locomotor independence corresponds to the same dental development 

age (here identified as age Group 2; see Table 1), and it is during this stage where relative 

Mt1 rigidity begins to significantly drop, while still remaining higher than that of individuals 

in age Group 3.

In macaques, relative weakening in Mt2–5 bone rigidity is also observed over ontogeny, 

although the drop in relative Mt1 rigidity is much greater than in the lesser toes. It is 

worthwhile to note, however, that age Group 3 macaques consistently have the lowest JS 

values (Fig. 1), but the differences are not significant when compared to older age Group 4–

5 animals (Table 3). Metatarsal epiphyses begin to fuse in macaques around four years of 

age (Bourne, 1975) which coincides with age Group 3 in this study, and thus this may be the 

reason for the relatively lowest values at this time. Increase in relative rigidity in age Groups 

4–5, although not significant, may be related to the fact that metatarsals a nearly fused and 

almost done growing. In contrast, chimpanzee lateral metatarsals do not show a consistent 

pattern of relative loss in rigidity. Rather, the Mt2–5s of age Group 5 chimpanzees tend to be 

relatively more rigid than age Groups 3 and 4 animals. Specifically, age Group 4 individuals 

consistently have the lowest JS values (Fig. 1) with significant differences from older age 

Group 5 individuals occurring in Mt2–4 (Table 3). It is unlikely that this difference is related 

to smaller samples sizes of age Group 4 chimpanzees compared to other age groups (Table 

2). Additionally, this difference in chimpanzees is not likely related to any specific 

ontogenetic changes in locomotor behaviors since the animals in these age groups are 

predominantly quadrupedal and have already reduced their use of suspensory or vertical 

climbing behaviors (Doran, 1997; Sarringhaus et al., 2014; 2016). It is possible, however, 

that with increased somatic growth into age Group 5 coupled with the frequent use of 

terrestrial substrates (e.g., Doran, 1997; Sarringhaus et al., 2016) that the middle part of the 

foot becomes slightly more rigid to withstand relatively high ground reaction forces during 

ground walking and galloping (Demes et al., 1994), as well as when using variable foot 

postures and kinematics during terrestrial locomotion (e.g., Vereecke et al., 2003). In 

general, however, we think it prudent to say that robusticity measures do not profoundly 
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differ between individuals within age Groups 3, 4, and 5 for any of the metatarsals in either 

species except the Mt2 of chimpanzees (see below for further discussion).

It is evident when comparing relative rigidity of the Mt1 with that of the other metatarsals 

(i.e., JSRel) that the hallucal metatarsal is always significantly more rigid in both rhesus 

macaque and chimpanzee feet (Table 6; Fig. 2). By in large, this pattern also holds when 

comparing absolute J values across digits within species (Table 2). Additionally, the Mt1 

remains relatively more rigid than Mt2–5 throughout ontogeny in both groups, and the adult 

patterns reported here for both macaques and chimpanzees are consistent with previous 

studies on adult great ape (Marchi, 2005) and human (Griffin and Richmond, 2005) 

metatarsal cross-sectional geometry (i.e., the Mt1 has the strongest and most rigid midshaft). 

It is important to note, however, that Mt1 JSRel has a different ontogenetic pattern within 

macaques versus within chimpanzees. In macaques the magnitude of difference does not 

significantly change as animals age and grow, except for an unusual significant difference 

between age Group 1 and 2 versus age Group 4 individuals (Tables 6 and 7). Unfortunately, 

it is not possible to conclude why this significant different exists at this time and speculation 

is not warranted. Therefore, not only is the macaque Mt1 absolutely and relatively more 

rigid than the other metatarsals across all age groups, this magnitude of difference between 

hallucal rigidity and that of the other metatarsals does not significantly change with age. In 

contrast, within chimpanzees JSRel is significantly greater in age Group 1 individuals 

compared to older animals (Tables 6 and 7) thereby effectively demonstrating that the Mt1 is 

“hyper-robust” in the youngest animals. Although the Mt1 of age Group 1 chimpanzees are 

absolutely the shortest (Table 2), their “hyper-robust” appearance is not simply a 

phenomenon of scaling (i.e., small denominator). That is because Mt1 length relative to 

Mt2–5 lengths is the same across chimpanzee ontogeny (see Figure S2 in the SOM). In 

contrast, Mt1 length relative to Mt2–5 lengths decreases over ontogeny in rhesus macaques. 

Moreover, Mt1 JSRel is significantly larger in chimpanzees than in macaques for both young 

and old animals (Table 8). These findings demonstrate that while forces acting on the hallux 

are relatively larger than in the other metatarsals at all ages, powerful hallucal grasping is 

likely more routinely used in chimpanzees than in macaques at the youngest ages.

As documented by other researchers, the timing of locomotor independence corresponds 

with distinct changes in limb bone strength and shape properties in both monkeys and apes 

(Ruff, 2003b; Young et al., 2010; Russo and Young, 2011; Sarringhaus et al., 2016). Limb 

bones of very young individuals are overly built (relative to body mass and/or bone length) 

and decrease in structural competency (i.e., safety factors) as they grow and become more 

proficient in their movements (Ruff, 2003b; Young et al., 2010). In the case of the hallucal 

metatarsal, it too appears to be overly built or hyper-robust in the youngest individuals of 

both species (Fig. 1) and J has a negative allometric relationship with metatarsal length 

(Table 5), possibly because they are heavily used in pedal grasping early on in life when they 

need to hold on to their mothers while being carried. As both chimpanzees and monkeys 

transition to become locomotor independent, the relative rigidity of their Mt1 decreases 

since they probably use their hallux with relatively less force. The fact that the Mt1, along 

with more proximal bones in the upper and lower limbs, are relatively stronger in younger 

versus older individuals further emphasizes that this is a general developmental phenomenon 
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in both primates (Ruff, 2003b; Young et al., 2010; Russo and Young, 2011; Sarringhaus et 

al., 2016) and other mammals (Carrier, 1983; Main and Biewener, 2007).

Like the Mt1, J values for Mt2–5 of macaques also scale with negative allometry with 

metatarsal lengthening. And in chimpanzees, the Mt4 and Mt5 also scale with negative 

allometry, whereas Mt3 scales isometrically. In these cases (albeit to a lesser degree in the 

chimpanzee Mt3), the foot bones are relatively less robust in older individuals with longer 

metatarsals. The one notable exception to this general pattern is in the chimpanzee Mt2 

where J scales with significant positive allometry with length during growth (Fig. 1; Table 

5). Thus, older chimpanzees have significantly stronger second metatarsals for their given 

length. This unusual pattern is likely related to the fact that the medial column of metatarsals 

(especially the Mt2) experiences higher plantar pressures per unit time (i.e., pressure 

impulses) compared to the lateral column (Mt4 and Mt5), especially when chimpanzees 

engage in vertical climbing and arboreal quadrupedal locomotion (Wunderlich and 

Ischinger, 2017). Thus, the medial side of the foot needs to be structurally stronger than the 

lateral side. Patterns of plantar pressure in the macaque foot (Higurashi et al., 2010; Hirasaki 

et al., 2010) suggest that the lateral metatarsal column (Mt4 and Mt5) is loaded more, but 

these patterns are highly variable with no one side (i.e., medial or lateral metatarsal column) 

being loaded consistently within and between arboreal and terrestrial steps, thus possibly 

explaining why J in no one metatarsal scales differently with length compared to the others.

The Mt1s of the youngest macaques and chimpanzees have elliptical cross-sectional shapes 

with Imax/Imin ratios greater than 1.0 (Table 9). It is believed that a loading environment 

that is relatively uniform in direction will cause bones to be more elliptical, whereas more 

variable (i.e., multi-directional) loads causes bones to adapt more circular shapes (e.g., 

Carlson, 2005, Carlson and Judex, 2007; Patel et al., 2013; Sarringhaus et al., 2016). 

Because even the youngest macaques and chimpanzees already have elliptical Mt1s, this 

implies that there is some baseline genetic component dictating its shape (and ultimately its 

rigidity and strength) and that the magnitude and direction of mechanical loads is not the 

only determinant of bone cross-sectional shape (e.g., Jepsen et al., 2007; Wallace et al., 

2012; Burr and Organ, 2017). It would be worthwhile to determine what Mt1 cross-sectional 

shape looks like in either a late-term fetus or a newborn, a period of life when the 

mechanical loads that the hallux is exposed to would be expected to be smaller in magnitude 

and less uniform in direction. Postnatally, the hallux is ultimately loaded in compression, 

bending, and torsion and any changes in cross-sectional shape are likely influenced by its 

loading environment (Jashashvili et al., 2015). As macaques age, the cross-sectional shape 

of the Mt1 becomes significantly more elliptical (Table 10), indicating that mechanical loads 

acting on the Mt1 become relatively more uniform in direction as macaques get older. This 

finding is counter what was predicted above and would suggest that as macaques grow and 

become both locomotor independent and competent, their use of diverse hallucal postures 

(including strong bouts of grasping) becomes less frequent despite habitually using arboreal 

substrates (Wells and Turnquist, 2001). Although EMG data from the flexors of the hallux 

have not been studied in rheses macaques during arboreal locomotion, these muscles have 

been shown to be only minimally active in regular bouts of wide and narrow pole 

quadrupedalism in captive capuchin monkeys (Patel et al., 2015a). Assuming quadrupedal 

foot postures and muscle recruitment patterns are constant across similar-sized monkeys on 
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arboreal supports, then it is also probable that forceful contractions of these same muscles in 

rhesus macaques may be infrequent, further indicating that powerful hallucal grasping is a 

relatively rare occurance (i.e., is more postural than locomotor) during stable bouts of 

movement.

In contrast, and again counter to predictions outlined above, as chimpanzees age, the cross-

sectional shape of their Mt1 does not become significantly more or less elliptical (Tables 9 

and 10). This suggests that the direction of loads acting on the chimpanzee hallux is variable 

throughout ontogeny despite the fact that older chimpanzees are less arboreal than younger 

ones (Doran, 1997; Sarringhaus, 2014, 2016). Moreover, because Mt1 cross-sectional shape 

of chimpanzees is less elliptical than macaques across all ages, it indicates that the 

chimpanzee hallux is used more varyingly in both grasping when in the trees and supporting 

body weight in a strut-like fashion when on the ground, and is well adapted mechanically to 

be used on a variety of substrate types (e.g., arboreal vs. terrestrial) and orientations (e.g., 

horizontal vs. oblique vs. vertical) (e.g., Patel et al., 2017; Wunderlich and Ischinger, 2017).

At the youngest developmental ages, relative rigidity of Mt2–5 is not significantly different 

between macaques and chimpanzees. In contrast, relative rigidity is significantly greater in 

the chimpanzee Mt1 at the youngest ages (Tables 2 and 4; Figs. 1). As both species mature 

past age Group 2, the differences in macaque and chimpanzee Mt2–5 relative rigidity/

robusticity becomes significant, with the latter having relatively more rigid metatarsals. 

Moreover, this difference between two species is even more prominent in the hallucal 

metatarsal where the Mt1 is significantly stronger in the chimpanzee in older individuals. 

These observed differences in Mt1 strength between macaques and chimpanzees across all 

stages of development counters the predicted form-function relationship related to hallucal 

grasping ontogeny discussed above. Rather, these data provide evidence demonstrating that 

chimpanzees in general have biomechanically more robust hallucal metatarsals than 

macaques at all stages of growth. Because chimpanzee Mt1s are absolutely and relatively 

longer than macaque Mt1s (Table 2 and Fig. S2), the greater ridgidity in the former is not 

due to scaling by length alone (Table 8). While the reasons for this finding are likely 

complex, one possibility is that chimpanzees may need to have stronger metatarsals, 

especially the Mt1, into adulthood because they spend more time on less compliant 

terrestrial subtrates (Doran, 1992; 1997). An ontogenetic study of other terrestrial primates 

such as baboons and gorillas could help test this hypothesis. Another reason could be that 

the chimpanzee hallux experiences relatively large forces during vertical climbing 

(Wunderlich and Ischinger, 2017) which is a behavior used at all ontogenetic stages, 

although much less in older adults (Sarringhaus et al., 2014).

Another hypothesis is that differences between macaques and chimpanzees also represent a 

general monkey versus ape (i.e., phylogenetic) pattern that has been previously noted based 

on external morphology alone (e.g., apes having relatively larger Mt1s; Conroy and Rose, 

1983; Wunderlich, 1999; Patel et al., 2017) and would be consistent with known behavioral 

differences in foot function and use in these two groups. Additional cross-sectional 

geometry data from a phylogenetically diverse sample of ape and monkey species, however, 

would be needed to endorse this hypothesis. Because of the varying body sizes within and 

between monkey and ape species (Smith and Jungers, 1997), such analyses could also 
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benefit from incorporating proper body mass estimates (i.e., not specifically FHBs as noted 

above) when scaling rigidity measures such as J (e.g., Polk et al., 2000). If this is eventually 

confirmed, it could provide the comparative biomechanical context needed to evaluate the 

behavior and pedal function of the earliest apes like Proconsul/Ekembo and to see if they 

had hallucal grasping strategies (or terrestrial and climbing positional behaviors) more like 

extant great apes or like extant monkeys (Conroy and Rose, 1983; Dunsworth, 2006; Patel et 

al., 2017). This would provide an important evolutionary context to some of the major 

morphological and behavioral differences that we see today in the feet of apes and monkeys.

In conclusion, different patterns of development in metatarsal diaphyseal ridgidity and shape 

appears to reflect real differences in which the foot, and in particular the hallux, functions 

across ontogeny in both apes and monkeys.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Bar plots of relative rigidity, Js (= J0.25/L), within metatarsals (Mt) and across age groups in 

rhesus macaque (Macaca mulatta; top) and chimpanzees (Pan troglodytes; bottom). Bars 

represent mean values and whiskers show the total range. Age groups defined in Table 1.
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Fig 2. 
Box-and-whiskers plots of Mt1 JSRel (= Mt1 Js/[Mt2–5 Js]0.25) across age groups in rhesus 

macaques (Macaca mulatta; white boxes) and chimpanzees (Pan troglodytes; grey boxes. 

Filled diamonds within each box indicate mean values. Horizontal lines within each box 

illustrate the median of the distribution. Boxes envelop the inter quartile range (50% of 

values) of the sample distribution, and whiskers encompass the range excluding outliers. 

Filled circles beyond whiskers indicate outliers. Age groups defined in Table 1.
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Fig 3. 
Box-and-whiskers plots of Mt1 shape (= Imax/Imin ratio) across age groups in rhesus 

macaques (Macaca mulatta; white boxes) and chimpanzees (Pan troglodytes; grey boxes). 

Filled diamonds within each box indicate mean values. Horizontal lines within each box 

illustrate the median of the distribution. Boxes envelop the inter quartile range (50% of 

values) of the sample distribution, and whiskers encompass the range excluding outliers. 

Filled circles beyond whiskers indicate outliers. Age groups defined in Table 1.
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Table 1

Ontogenetic age groups definitions in rhesus macaques (Macaca) and chimpanzees (Pan).

Ontogenetic age group Tooth eruption stage Macaca age ranges 
(years)#

Pan age ranges (years)† Locomotor stage‡

1 Only deciduous teeth visible <1 <3 Not independent

2 M1 erupting 1–2.5 3–5 Transitional

3 M1 fully erupted and M2 erupting 2.5–4.5 5–10 Independent

4 M2 fully erupted and M3 erupting 4.5–7 10–15 Independent

5 All teeth in occlusion >7 >15 Independent

#
Following Kenny (1975).

†
Following Sarringhaus et al. (2016) with data from Smith et al. (1994), Smith and Boesch (2011), and Smith et al. (2013).

‡
Based on data from Doran (1997), Wells and Turnquist (2001), and Sarringhaus et al. (2016).
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Table 6

Descriptive statistics for Mt1 JSRel in rhesus macaques (Macaca) and chimpanzees (Pan) across five age 

groups.#

Taxon Age Group n Mean 1 SD

Macaca 1 11 1.623 0.111

2 16 1.604 0.078

3 7 1.573 0.076

4 23 1.503 0.122

5 16 1.573 0.056

Pan 1 13 1.856 0.110

2 15 1.745 0.108

3 12 1.639 0.154

4 8 1.687 0.162

5 32 1.667 0.083

#
JSRel = Mt1 Js/ [Mt2–5 Js]0.25, where Js = J0.25/L and where J is polar moment of area (mm4) and L is length (mm); Mt, metatarsal; n, sample 

size; SD, standard deviation.
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Table 8

Results of ANOVAs comparing Mt1 JSRel between rhesus macaques and chimpanzees in five age groups.#

Age Group F p Directional difference†

1 26.592 <0.0001* P>M

2 17.398 0.0003* P>M

3 1.247 0.3037 P>M

4 11.414 0.0021* P>M

5 16.861 0.0002* P>M

#
JSRel = Mt1 Js/ [Mt2–5 Js]0.25, where Js = J0.25/L and where J is polar moment of area (mm4) and L is length (mm); Mt, metatarsal; M, rhesus 

macaque; P, chimpanzee.

†
P>M = chimpanzee values greater than macaque values.

*
Bold values significant at the p<0.05.
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Table 9

Descriptive statistics for Mt1 Shape (=Imax/Imin) in rhesus macaques (Macaca) and chimpanzees (Pan) across 

five age groups.#

Taxon Age Group n Mean 1 SD

Macaca 1 11 1.367 1.220

2 16 1.378 1.109

3 7 1.444 1.281

4 23 1.515 1.523

5 16 1.514 1.651

Pan 1 13 1.274 1.219

2 15 1.264 1.831

3 12 1.228 1.238

4 8 1.218 1.038

5 32 1.315 1.692

#
Mt, metatarsal; n, sample size; SD, standard deviation.
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