62 research outputs found
Fine Mapping of Posttranslational Modifications of the Linker Histone H1 from Drosophila melanogaster
The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous
Use of Underarm Cosmetic Products in Relation to Risk of Breast Cancer: A Case-Control Study
Background
Previous studies on breast cancer (BC), underarm cosmetic products (UCP) and aluminum salts have shown conflicting results. We conducted a 1:1 age-matched case-control study to investigate the risk for BC in relation to self-reported UCP application.
Methods
Self-reported history of UCP use was compared between 209 female BC patients (cases) and 209 healthy controls. Aluminum concentration in breast tissue was measured in 100 cases and 52 controls. Multivariable conditional logistic regression analysis was performed to estimate odds ratios (ORs) with 95% confidence intervals (CIs), adjusting for established BC risk factors.
Findings
Use of UCP was significantly associated with risk of BC (p = 0.036). The risk for BC increased by an OR of 3.88 (95% CI 1.03β14.66) in women who reported using UCP's several times daily starting at an age earlier than 30 years. Aluminum in breast tissue was found in both cases and controls and was significantly associated to self-reported UCP use (p = 0.009). Median (interquartile) aluminum concentrations were significantly higher (p = 0.001) in cases than in controls (5.8, 2.3β12.9 versus 3.8, 2.5β5.8 nmol/g).
Interpretation
Frequent use of UCPs may lead to an accumulation of aluminum in breast tissue. More than daily use of UCPs at younger ages may increase the risk of BC
The structure of the Shiga toxin 2a A-subunit dictates the interactions of the toxin with blood components
Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)-producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A-subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re-evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS-pathogenesis and to develop therapeutic approaches
Pelvic floor muscle function in a general female population in relation with age and parity and the relation between voluntary and involuntary contractions of the pelvic floor musculature
Contains fulltext :
80525.pdf (publisher's version ) (Closed access
Early cellular signaling responses to axonal injury
<p>Abstract</p> <p>Background</p> <p>We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury.</p> <p>Results</p> <p>We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFΞ± and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax).</p> <p>Conclusion</p> <p>We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.</p
Spatial Proximity and Similarity of the Epigenetic State of Genome Domains
Recent studies demonstrate that the organization of the chromatin within the nuclear space might play a crucial role in the regulation of gene expression. The ongoing progress in determination of the 3D structure of the nuclear chromatin allows one to study correlations between spatial proximity of genome domains and their epigenetic state. We combined the data on three-dimensional architecture of the whole human genome with results of high-throughput studies of the chromatin functional state and observed that fragments of different chromosomes that are spatially close tend to have similar patterns of histone modifications, methylation state, DNAse sensitivity, expression level, and chromatin states in general. Moreover, clustering of genome regions by spatial proximity produced compact clusters characterized by the high level of histone modifications and DNAse sensitivity and low methylation level, and loose clusters with the opposite characteristics. We also associated the spatial proximity data with previously detected chimeric transcripts and the results of RNA-seq experiments and observed that the frequency of formation of chimeric transcripts from fragments of two different chromosomes is higher among spatially proximal genome domains. A fair fraction of these chimeric transcripts seems to arise post-transcriptionally via trans-splicing
Epidermal Stem Cells Are Defined by Global Histone Modifications that Are Altered by Myc-Induced Differentiation
Activation of Myc induces epidermal stem cells to exit their niche and differentiate into sebocytes and interfollicular epidermis, a process that is associated with widespread changes in gene transcription. We have identified chromatin modifications that are characteristic of epidermal stem cells and investigated the effects of Myc activation. Quiescent stem cells in the interfollicular epidermis and the hair follicle bulge had high levels of tri-methylated histone H3 at lysine 9 and H4 at lysine 20. Chromatin in both stem cell populations was hypoacteylated at histone H4 and lacked mono-methylation of histone H4 at lysine 20. Myc-induced exit from the stem cell niche correlated with increased acetylation at histone H4 and transiently increased mono-methylation at lysine 20. The latter was replaced by epigenetic modifications that are largely associated with chromatin silencing: di-methylation at histone H3 lysine 9 and histone H4 lysine 20. These modifications correlated with changes in the specific histone methyltransferases Set8 and Ash-1. The Myc-induced switch from mono- to di-methylated H4K20 required HDAC activity and was blocked by the HDAC inhibitor trichostatin A (TSA). TSA treatment induced a similar epidermal phenotype to activation of Myc, and activation of Myc in the presence of TSA resulted in massive stimulation of terminal differentiation. We conclude that Myc-induced chromatin modifications play a major role in Myc-induced exit from the stem cell compartment
Chromatin structure characteristics of pre-miRNA genomic sequences
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are non-coding RNAs with important roles in regulating gene expression. Recent studies indicate that transcription and cleavage of miRNA are coupled, and that chromatin structure may influence miRNA transcription. However, little is known about the relationship between the chromatin structure and cleavage of pre-miRNA from pri-miRNA.</p> <p>Results</p> <p>By analysis of genome-wide nucleosome positioning data sets from human and <it>Caenorhabditis elegans </it>(<it>C. elegans</it>), we found an enrichment of positioned nucleosome on pre-miRNA genomic sequences, which is highly correlated with GC content within pre-miRNA. In addition, obvious enrichments of three histone modifications (H2BK5me1, H3K36me3 and H4K20me1) as well as RNA Polymerase II (RNAPII) were observed on pre-miRNA genomic sequences corresponding to the active-promoter miRNAs and expressed miRNAs.</p> <p>Conclusion</p> <p>Our results revealed the chromatin structure characteristics of pre-miRNA genomic sequences, and implied potential mechanisms that can recognize these characteristics, thus improving pre-miRNA cleavage.</p
Depletion of Human Histone H1 Variants Uncovers Specific Roles in Gene Expression and Cell Growth
At least six histone H1 variants exist in somatic mammalian cells that bind to the linker DNA and stabilize the nucleosome particle contributing to higher order chromatin compaction. In addition, H1 seems to be actively involved in the regulation of gene expression. However, it is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible shRNA-mediated knock-down of each of the H1 variants in a human breast cancer cell line. Rapid inhibition of each H1 variant was not compensated for by changes of expression of other variants. Microarray experiments have shown a different subset of genes to be altered in each H1 knock-down. Interestingly, H1.2 depletion caused specific effects such as a cell cycle G1-phase arrest, the repressed expression of a number of cell cycle genes, and decreased global nucleosome spacing. On its side, H1.4 depletion caused cell death in T47D cells, providing the first evidence of the essential role of an H1 variant for survival in a human cell type. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants, supporting the theory that distinct roles exist for the linker histone variants
Histone H1 Subtypes Differentially Modulate Chromatin Condensation without Preventing ATP-Dependent Remodeling by SWI/SNF or NURF
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors
- β¦