501 research outputs found

    Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    Get PDF
    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously

    Three methods for performing Hankel transforms

    Get PDF
    Three methods for performing Hankel transforms with optical or digital processors are described. The first method is applicable when the input data is available in Cartesian (x-y) format and uses the close connection between generalized Hankel transform and the two dimensional Fourier transform in Cartesian coordinates. The second method is useful when the input data is in polar (r - theta) format and uses change of variables to perform the nth order Hankel transform as a correlation integral. The third method utilizes the von Neumann addition theorem for Bessel functions to extract the Hankel coefficients from a correlation between the radial part of the input and a Bessel function. Initial experimental results obtained for optical implementation of the first two methods are presented

    Classifying multispectral data by neural networks

    Get PDF
    Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data

    Plasmonic Enhancement of Emission from Si-nanocrystals

    Full text link
    Plasmonic gratings of different periodicities are fabricated on top of Silicon nanocrystals embedded in Silicon Dioxide. Purcell enhancements of up to 2 were observed, which matches the value from simulations. Plasmonic enhancements are observed for the first three orders of the plasmonic modes, with the peak enhancement wavelength varying with the periodicity. Biharmonic gratings are also fabricated to extract the enhanced emission from the first order plasmonic mode, resulting in enhancements with quality factors of up to 16.Comment: 4 pages, 5 figures added explanation of low purcell enhancement updated figure

    Statistical Modelling of Recent Changes in Extreme Rainfall in Taiwan

    Get PDF
    This paper has two primary purposes. First, we fit the annual maximum daily rainfall data for 6 rainfall stations, both with stationary and non-stationary generalized extreme value (GEV) distributions for the periods 1911-2010 and 1960-2010 in Taiwan, and detect the changes between the two phases for extreme rainfall. The non-stationary model means that the location parameter in the GEV distribution is a linear function of time to detect temporal trends in maximum rainfall. Second, we compute the future behavior of stationary models for the return levels of 10, 20, 50 and 100-years based on the period 1960-2010. In addition, the 95% confidence intervals of the return levels are provided. This is the first investigation to use generalized extreme value distributions to model extreme rainfall in Taiwan

    Multi-objective Non-intrusive Hearing-aid Speech Assessment Model

    Full text link
    Without the need for a clean reference, non-intrusive speech assessment methods have caught great attention for objective evaluations. While deep learning models have been used to develop non-intrusive speech assessment methods with promising results, there is limited research on hearing-impaired subjects. This study proposes a multi-objective non-intrusive hearing-aid speech assessment model, called HASA-Net Large, which predicts speech quality and intelligibility scores based on input speech signals and specified hearing-loss patterns. Our experiments showed the utilization of pre-trained SSL models leads to a significant boost in speech quality and intelligibility predictions compared to using spectrograms as input. Additionally, we examined three distinct fine-tuning approaches that resulted in further performance improvements. Furthermore, we demonstrated that incorporating SSL models resulted in greater transferability to OOD dataset. Finally, this study introduces HASA-Net Large, which is a non-invasive approach for evaluating speech quality and intelligibility. HASA-Net Large utilizes raw waveforms and hearing-loss patterns to accurately predict speech quality and intelligibility levels for individuals with normal and impaired hearing and demonstrates superior prediction performance and transferability

    Metacarpophalangeal joint loads during bonobo locomotion: model predictions vs. proxies

    Get PDF
    The analysis of internal trabecular and cortical bone has been an informative tool for drawing inferences about behaviour in extant and fossil primate taxa. Within the hand, metacarpal bone architecture has been shown to correlate well with primate locomotion; however, the extent of morphological differences across taxa is unexpectedly small given the variability in hand use. One explanation for this observation is that the activity-related differences in the joint loads acting on the bone are simply smaller than estimated based on commonly used proxies (i.e. external loading and joint posture), which neglect the influence of muscle forces. In this study, experimental data and a musculoskeletal finger model are used to test this hypothesis by comparing differences between climbing and knuckle-walking locomotion of captive bonobos (Pan paniscus) based on (i) joint load magnitude and direction predicted by the models and (ii) proxy estimations. The results showed that the activity-related differences in predicted joint loads are indeed much smaller than the proxies would suggest, with joint load magnitudes being almost identical between the two locomotor modes. Differences in joint load directions were smaller but still evident, indicating that joint load directions might be a more robust indicator of variation in hand use than joint load magnitudes. Overall, this study emphasizes the importance of including muscular forces in the interpretation of skeletal remains and promotes the use of musculoskeletal models for correct functional interpretations

    Behavioral and Cellular Tagging in Young and in Early Cognitive Aging

    Get PDF
    The ability to maintain relevant information on a daily basis is negatively impacted by aging. However, the neuronal mechanism manifesting memory persistence in young animals and memory decline in early aging is not fully understood. A novel event, when introduced around encoding of an everyday memory task, can facilitate memory persistence in young age but not in early aging. Here, we investigated in male rats how sub-regions of the hippocampus are involved in memory representation in behavioral tagging and how early aging affects such representation by combining behavioral training in appetitive delayed-matching-to-place tasks with the “cellular compartment analysis of temporal activity by fluorescence in situ hybridization” technique. We show that neuronal assemblies activated by memory encoding were also partially activated by novelty, particularly in the distal CA1 and proximal CA3 subregions in young male rats. In early aging, both encoding- and novelty-triggered neuronal populations were significantly reduced with a more profound effect in encoding neurons. Thus, memory persistence through novelty facilitation engages overlapping hippocampal assemblies as a key cellular signature, and cognitive aging is associated with underlying reduction in neuronal activation

    Elastic Chain in a Random Potential: Simulation of the Displacement Function <(u(x)u(0))2><(u(x)-u(0))^2> and Relaxation

    Full text link
    We simulate the low temperature behaviour of an elastic chain in a random potential where the displacements u(x)u(x) are confined to the {\it longitudinal} direction (u(x)u(x) parallel to xx) as in a one dimensional charge density wave--type problem. We calculate the displacement correlation function g(x)=<(u(x)u(0))2>g(x)=< (u(x)-u(0))^2> and the size dependent average square displacement W(L)=W(L)=. We find that g(x)x2ηg(x)\sim x^{2\eta} with η3/4\eta\simeq3/4 at short distances and η3/5\eta\simeq3/5 at intermediate distances. We cannot resolve the asymptotic long distance dependence of gg upon xx. For the system sizes considered we find g(L/2)WL2χg(L/2)\propto W\sim L^{2\chi} with χ2/3\chi\simeq2/3. The exponent η3/5\eta\simeq3/5 is in agreement with the Random Manifold exponent obtained from replica calculations and the exponent χ2/3\chi\simeq2/3 is consistent with an exact solution for the chain with {\it transverse} displacements (u(x)u(x) perpendicular to xx).The distribution of nearest distances between pinning wells and chain-particles is found to develop forbidden regions.Comment: 19 pages of LaTex, 6 postscript figures available on request, submitted to Journal of Physics A, MAJOR CHANGE
    corecore