443 research outputs found
Survey of classical density functionals for modelling hydrogen physisorption at 77 K
This work surveys techniques based on classical density functionals for modeling the quantum dispersion of physisorbed hydrogen at 77 K. Two such techniques are examined in detail. The first is based on the "open ring approximation" (ORA) of Broukhno et al., and it is compared with a technique based on the semiclassical approximation of Feynman and Hibbs (FH). For both techniques, a standard classical density functional is used to model hydrogen molecule-hydrogen molecule (i.e., excess) interactions. The three-dimensional (3D) quantum harmonic oscillator (QHO) system and a model of molecular hydrogen adsorption into a graphitic slit pore at 77 K are used as benchmarks. Density functional results are compared with path-integral Monte Carlo simulations and with exact solutions for the 3D QHO system. It is found that neither of the density functional treatments are entirely satisfactory. However, for hydrogen physisorption studies at 77 K the ORA based technique is generally superior to the FH based technique due to a fortunate cancellation of errors in the density functionals used. But, if more accurate excess functionals are used, the FH technique would be superior
Feeding studies on potential fish predators of post-settlement Acanthaster planci: final report prepared for the Great Barrier Reef Marine Park Authority
[Extract] The general question that prompted this study was whether human exploitation of the fish predators of Acanthaster planci may lead to increased frequency of outbreaks on the GBR
Lattice density-functional theory of surface melting: the effect of a square-gradient correction
I use the method of classical density-functional theory in the
weighted-density approximation of Tarazona to investigate the phase diagram and
the interface structure of a two-dimensional lattice-gas model with three
phases -- vapour, liquid, and triangular solid. While a straightforward
mean-field treatment of the interparticle attraction is unable to give a stable
liquid phase, the correct phase diagram is obtained when including a suitably
chosen square-gradient term in the system grand potential. Taken this theory
for granted, I further examine the structure of the solid-vapour interface as
the triple point is approached from low temperature. Surprisingly, a novel
phase (rather than the liquid) is found to grow at the interface, exhibiting an
unusually long modulation along the interface normal. The conventional
surface-melting behaviour is recovered only by artificially restricting the
symmetries being available to the density field.Comment: 16 pages, 6 figure
Determining the Physical Lens Parameters of the Binary Gravitational Microlensing Event MOA-2009-BLG-016
We report the result of the analysis of the light curve of the microlensing
event MOA-2009-BLG-016. The light curve is characterized by a short-duration
anomaly near the peak and an overall asymmetry. We find that the peak anomaly
is due to a binary companion to the primary lens and the asymmetry of the light
curve is explained by the parallax effect caused by the acceleration of the
observer over the course of the event due to the orbital motion of the Earth
around the Sun. In addition, we detect evidence for the effect of the finite
size of the source near the peak of the event, which allows us to measure the
angular Einstein radius of the lens system. The Einstein radius combined with
the microlens parallax allows us to determine the total mass of the lens and
the distance to the lens. We identify three distinct classes of degenerate
solutions for the binary lens parameters, where two are manifestations of the
previously identified degeneracies of close/wide binaries and positive/negative
impact parameters, while the third class is caused by the symmetric cycloid
shape of the caustic. We find that, for the best-fit solution, the estimated
mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun,
implying a brown-dwarf companion. However, there exists a solution that is
worse only by \Delta\chi^2 ~ 3 for which the mass of the secondary is above the
hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions
will be difficult as the relative lens-source proper motions for both are
similar and small (~ 1 mas/yr) and thus the lens will remain blended with the
source for the next several decades.Comment: 7 pages, 2 tables, and 5 figure
Density functional formalism in the canonical ensemble
Density functional theory, when applied to systems with , is based
on the grand canonical extension of the Hohenberg-Kohn-Sham theorem due to
Mermin (HKSM theorem). While a straightforward canonical ensemble
generalization fails, work in nanopore systems could certainly benefit from
such extension. We show that, if the asymptotic behaviour of the canonical
distribution functions is taken into account, the HKSM theorem can be extended
to the canonical ensemble. We generate -modified correlation and
distribution functions hierarchies and prove that, if they are employed, either
a modified external field or the density profiles can be indistinctly used as
independent variables. We also write down the % -modified free energy
functional and prove that its minimum is reached when the equilibrium values of
the new hierarchy are used. This completes the extension of the HKSM theorem.Comment: revtex, to be submitted to Phys. Rev. Let
The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observation of a Thick-Disk Brown Dwarf
Parallax is the most fundamental technique to measure distances to
astronomical objects. Although terrestrial parallax was pioneered over 2000
years ago by Hipparchus (ca. 140 BCE) to measure the distance to the Moon, the
baseline of the Earth is so small that terrestrial parallax can generally only
be applied to objects in the Solar System. However, there exists a class of
extreme gravitational microlensing events in which the effects of terrestrial
parallax can be readily detected and so permit the measurement of the distance,
mass, and transverse velocity of the lens. Here we report observations of the
first such extreme microlensing event OGLE-2007-BLG-224, from which we infer
that the lens is a brown dwarf of mass M=0.056 +- 0.004 Msun, with a distance
of 525 +- 40 pc and a transverse velocity of 113 +- 21 km/s. The velocity
places the lens in the thick disk, making this the lowest-mass thick-disk brown
dwarf detected so far. Follow-up observations may allow one to observe the
light from the brown dwarf itself, thus serving as an important constraint for
evolutionary models of these objects and potentially opening a new window on
sub-stellar objects. The low a priori probability of detecting a thick-disk
brown dwarf in this event, when combined with additional evidence from other
observations, suggests that old substellar objects may be more common than
previously assumed.Comment: ApJ Letters, in press, 15 pages including 2 figure
Microlensing Event MOA-2007-BLG-400: Exhuming the Buried Signature of a Cool, Jovian-Mass Planet
We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb.
The planet was detected in a high-magnification microlensing event (with peak
magnification A_max = 628) in which the primary lens transited the source,
resulting in a dramatic smoothing of the peak of the event. The angular extent
of the region of perturbation due to the planet is significantly smaller than
the angular size of the source, and as a result the planetary signature is also
smoothed out by the finite source size. Thus the deviation from a single-lens
fit is broad and relatively weak (~ few percent). Nevertheless, we demonstrate
that the planetary nature of the deviation can be unambiguously ascertained
from the gross features of the residuals, and detailed analysis yields a fairly
precise planet/star mass ratio of q = 0.0026+/-0.0004, in accord with the large
significance (\Delta\chi^2=1070) of the detection. The planet/star projected
separation is subject to a strong close/wide degeneracy, leading to two
indistinguishable solutions that differ in separation by a factor of ~8.5.
Upper limits on flux from the lens constrain its mass to be M < 0.75 M_Sun
(assuming it is a main-sequence star). A Bayesian analysis that includes all
available observational constraints indicates a primary in the Galactic bulge
with a mass of ~0.2-0.5 M_Sun and thus a planet mass of ~ 0.5-1.3 M_Jupiter.
The separation and equilibrium temperature are ~0.6-1.1AU (~5.3-9.7AU) and
~103K (~34K) for the close (wide) solution. If the primary is a main-sequence
star, follow-up observations would enable the detection of its light and so a
measurement of its mass and distance.Comment: 30 pages, 6 figures, Submitted to Ap
Interpretation of Strong Short-Term Central Perturbations in the Light Curves of Moderate-Magnification Microlensing Events
To improve the planet detection efficiency, current planetary microlensing
experiments are focused on high-magnification events searching for planetary
signals near the peak of lensing light curves. However, it is known that
central perturbations can also be produced by binary companions and thus it is
important to distinguish planetary signals from those induced by binary
companions. In this paper, we analyze the light curves of microlensing events
OGLE-2007-BLG-137/MOA-2007-BLG-091, OGLE-2007-BLG-355/MOA-2007-BLG-278, and
MOA-2007-BLG-199/OGLE-2007-BLG-419, for all of which exhibit short-term
perturbations near the peaks of the light curves. From detailed modeling of the
light curves, we find that the perturbations of the events are caused by binary
companions rather than planets. From close examination of the light curves
combined with the underlying physical geometry of the lens system obtained from
modeling, we find that the short time-scale caustic-crossing feature occurring
at a low or a moderate base magnification with an additional secondary
perturbation is a typical feature of binary-lens events and thus can be used
for the discrimination between the binary and planetary interpretations.Comment: 17 pages, 4 figures, 1 tabl
- …
